Cut Sections

Interstate 35 over Waterloo Road Interchange Oklahoma and Logan Counties, Oklahoma

Job Piece No. 29843(04)

Engineering Contract No. EC-1500N

March 22, 2019

Terracon Project No. 03185253

Prepared for:

Garver, LLC. Tulsa, Oklahoma

Prepared by:

Terracon Consultants, Inc. Oklahoma City, Oklahoma

terracon.com

Terracon

Environmental Facilities Geotechnical Materials

Garver, LLC. 6450 South Lewis, Suite 300 Tulsa, Oklahoma 74136

Attn: Mr. Jenny Sallee

P: [918] 858 4166

E: jesallee@garverusa.com

Re: Geotechnical Engineering Report

Cut Sections

Interstate 35 over Waterloo Road Interchange Oklahoma and Logan Counties, Oklahoma

Job Piece No. 29843(04)

Engineering Contract No. EC-1500N Terracon Project No. 03185253

Dear Ms. Sallee:

Terracon Consultants, Inc. (Terracon) has completed the geotechnical engineering services for the above-referenced project. The scope of our services was outlined in the Geotechnical Scope of work Revision 2 (Terracon Proposal No. P03165261) dated August 16, 2016.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report, or if we may be of further service, please contact us.

Sincerely,

Terracon Consultants, Inc.

Cert. Of Auth. #CA-4531 exp. 6/30/19

Diana Vargas Suaza, E.I.

Senior Staff Engineer

Deep Khatri

Senior Staff Engineer

DVCS:NT\kld\n:\project documents\2018\03185253\mar2019

Copies to:

Addressee (1 via email)

Terracon Consultants, Inc. 4701 North Stiles Avenue Oklahoma City, Oklahoma 73105
P [405] 525 0453 F [405] 557 0549 terracon.com

Oklahoma No. 23

Cut Sections I-35 over Waterloo Road Interchange Oklahoma and Logan Counties, Oklahoma March 22, 2019 Terracon Project No. 03185253

TABLE OF CONTENTS

			Page
1.0	INTR	RODUCTION	1
2.0	PRO	JECT INFORMATION	1
	2.1	Project Description	1
	2.2	Site Location and Description	
3.0	SUB	SURFACE CONDITIONS	2
	3.1	Geology	2
	3.2	Typical Subsurface Conditions	
	3.3	Groundwater	6
4.0	REC	RECOMMENDATIONS FOR DESIGN AND CONSTRUCTION	
	4.1	Geotechnical Considerations	7
	4.2	Cut Slope Evaluations	7
	4.3	Stability Analysis	8
	4.4	Catchment Ditch	9
	4.5	Erosion and Drainage Considerations	
	4.6	Bedrock Rippability Assessment	
5.0	GEN	ERAL COMMENTS	12

APPENDIX A - FIELD EXPLORATION

Exhibit A-1 Site Location Plan Exhibits A-2 to A-4 **Boring Location Plans**

Exhibit A-5 Field Exploration Description Exhibits A-6 to A-20

Borings CS-1 to CS-15

Photographic Rock Core Logs Exhibit A-21

Exhibits A-22 to A-29 Subsurface Profiles

APPENDIX B - FIELD TESTING RESULTS

Exhibits B-1 to B-7 Results of Seismic Refraction Surveys

Cut Sections • I-35 over Waterloo Road Interchange • Oklahoma and Logan Counties, Oklahoma • March 22, 2019 • Terracon Project No. 03185253

TABLE OF CONTENTS - (Cont'd.)

APPENDIX C - LABORATORY TESTING

Exhibit C-1 Laboratory Test Description
Exhibits C-2 to C-7 Grain Size Distribution Curves
Exhibits C-8 to C-10 Standard Proctor Test Results
Exhibits C-11 Direct Shear Test Results

Exhibits C-12 Unconsolidated Undrained Triaxial Shear Test Results

APPENDIX D - SLOPE STABILITY ANALYSIS

Exhibits D-1 to D-8 Cut Slope Stability Analysis

APPENDIX E - SUPPORTING DOCUMENTS

Exhibit E-1 General Notes

Exhibit E-2 Unified Soil Classification System

Exhibit E-3 Sedimentary Rock Classification

Exhibit E-4 Configuration

Exhibit E-4 ODOT Catchment Ditch Configuration

GEOTECHNICAL ENGINEERING REPORT CUT SECTIONS INTERSTATE 35 OVER WATERLOO ROAD OKLAHOMA AND LOGAN COUNTIES, OKLAHOMA JOB PIECE NO. 29843(04) ENGINEERING CONTRACT NO. EC-1500N

Terracon Project No. 03185253 March 22, 2019

1.0 INTRODUCTION

The proposed project is located at the Interstate 35 and Waterloo Road interchange in Oklahoma and Logan Counties, Oklahoma. A geotechnical exploration has been performed for the cut sections along the proposed new alignment. A total of fifteen borings, designated CS-1 through CS-15, were performed to depths of about 20 to 40 feet below the existing ground surface. A site location map and boring location diagrams along with logs of the borings are included in Appendix A of this report.

The purpose of these services is to provide information and geotechnical engineering recommendations relative to:

- subsurface soil and rock conditions
- earthwork
- rock cut slope stability analysis
- groundwater conditions
- rock rippability

2.0 PROJECT INFORMATION

2.1 Project Description

Item	Description		
Site layout See Appendix A, Exhibits A-1 to A-4, Site Location and Boring Locat			
Proposed Grading	We understand that the project will consist of the re-construction, widening realignment of the existing roadway of Interstate 35 over Waterloo Road, including the construction of Ramp D embankment and Waterloo Road from Sooner Road to North Air Depot Boulevard in Oklahoma and Logan Counties. We also understand that earthwork for the roadway for this project will include up to 20 feet of cut to develop design grades. Based on the grading plans provided to us by the client, cut sections to be analyzed for this project are located between following stations:		

Cut Sections • I-35 over Waterloo Road Interchange • Oklahoma and Logan Counties, Oklahoma • March 22, 2019 • Terracon Project No. 03185253

Item	Description
	Cut Section 1: 113+00 to 119+00. Up to 13 feet of cut (Boring CS-1 & CS-2)
	Cut Section 2: 135+00 to 138+00. Up to 20 feet of cut (Boring CS-3)
	Cut Section 3: 149+00 to 167+25. Up to 20 feet of cut (Borings CS-4 to CS-8)
Proposed Grading	 Cut Section 4 (includes Ramp D Boring): 146+00 to 167+25. Up to 15 feet of cut (Boring CS-9 to CB-14)
	Cut Section 5 (Waterloo Road): 94+00 to 97+50. Up to 13 feet of cut (Boring CS-15)

2.2 Site Location and Description

Item	Description					
Location	We understand that the project will consist of the re-construction, widening of the existing roadway of Interstate 35 and Waterloo Road interchange on their existing alignment, the construction of new embankment I-35 Ramp D and the reconstruction and widening of Waterloo Road from Sooner Road to North Air Depot Boulevard in Oklahoma and Logan Counties, Oklahoma. See Exhibits A-2 to A-4 in Appendix A.					
Current ground cover along the project alignment is vegetation and Grass, brushes, trees, topsoil, weathered sandstone and weathered sh were observed during our field exploration.						

3.0 SUBSURFACE CONDITIONS

3.1 Site Geology

Based on information published in the Oklahoma Department of Transportation manual, "Engineering Classification of Geologic Materials: Division Four", the geology of the project site consists of the Garber Unit of Permian Age.

This unit consists of a series of red clay shales, red sandy shales, and massive commonly crossbedded lenticular sandstones. The total thickness of the unit is about 400 feet in Oklahoma County, it thickens to about 600 feet in Garfield County and continues to thicken northward to the state line.

3.2 Typical Subsurface Conditions

The subsurface conditions encountered in the borings are shown on the boring logs and are

Cut Sections • I-35 over Waterloo Road Interchange • Oklahoma and Logan Counties, Oklahoma • March 22, 2019 • Terracon Project No. 03185253

briefly described below. The stratification lines shown on the boring logs represent the approximate boundary between soil and rock types; in-situ, the transition between materials may be gradual and indistinct. Classification of bedrock materials was made from disturbed samples and rock cores. Petrographic analysis of rock cores may reveal other rock types.

The overburden soils consisted of sands with varying amounts of clay and silt, lean clays with varying amounts of sand and silt and sandy silts to depths of about 4 to 7 feet in all borings except for boring CS-14 where the overburden soils extended to a depth of about 25 feet below existing grades.

The overburden soils encountered in the cut section borings were underlain by interbedded layers of highly weathered to weathered sandstone, shale or siltstone. The highly weathered to weathered sandstone, shale or siltstone are generally various shades of red, brown and yellow with some pink, white, gray and black. Unconfined compressive strength of the highly weathered to weathered bedrock ranged from 10 to 2,270 psi.

Field reconnaissance of the proposed alignment revealed several areas of highly weathered to weathered bedrock outcrops along the project alignment. Highly weathered to weathered sandstone with highly weathered to weathered shale and siltstones seams was the dominant bedrock type along the proposed alignment. The approximate outcrop locations are shown on the boring locations plans in Exhibits A-2 to A-4. Photographic rock core logs are presented in Exhibit A-21 in Appendix A.

On a regional scale, the bedding of the sandstone formation in this area is relatively flat and generally appears to dip to the north and west. Locally, the dip of bedding varies with dips ranging from 5 to 17 degrees. Jointing within the bedrock was generally near vertical. The information on individual outcrops of highly weathered to weathered sandstone or shale, with strike and dip measurements, is presented in the boring location plan in Exhibits A-2 to A-4.

Laboratory tests were conducted on selected soil and rock samples. The test results are presented on the boring logs in Appendix A and also in Appendix C. A summary of the subsurface conditions is given as follows:

Cut Section 1 - Stations 113+00 to 119+00

Two borings, designated CS-1 and CS-2, were drilled in the cut section to depths of approximately 20 to 25.5 feet below the existing ground surface.

The overburden soils consisted of silty or clayey sands and sandy lean clays to depths of about 4 to 6 feet. Based on laboratory testing results, the plasticity of the soils varies between low to moderately plastic. The overburden soils were underlain by red, brown or yellow, highly weathered to weathered shale and sandstone. Based on the results of our exploration, highly

Cut Sections • I-35 over Waterloo Road Interchange • Oklahoma and Logan Counties, Oklahoma • March 22, 2019 • Terracon Project No. 03185253

weathered to weathered sandstone interbedded with shale layers is the predominant bedrock material along this cut section.

Unconfined compressive strength tests performed on the bedrock materials resulted in values ranging from approximately 10 pounds per square inch (psi) to 490 psi.

Cut Section 2 - Stations 135+00 to 138+00

One boring, designated CS-3, was drilled between the above listed stations to a depth of approximately 25.5 feet below the existing ground surface.

Very stiff, lean clay with sand was encountered to a depth of about 5 feet below existing grade. Based on the laboratory testing results, the plasticity of the lean clay soils is low.

Underlying the overburden soils, we encountered highly weathered sandstone interbedded with highly weathered shale and a seam of highly weathered siltstone. The bedrock was generally various shades of red. Based on the results of our exploration, highly weathered shale interbedded with highly weathered sandstone are the predominant bedrock materials along the alignment.

Unconfined compressive strength tests performed on the bedrock materials resulted in values ranging from approximately 120 psi to 800 psi.

Cut Section 3 - Stations 149+00 to 167+25

Five borings, designated CS-4 through CS-8, were drilled between the above mentioned stations to depths of approximately 25 to 40 feet below the existing ground surface. Exposed highly weathered to weathered sandstone interbedded with highly weathered shale bedrock was encountered at the ground surface near borings CS-4 and CS-8.

Loose to dense silty or clayey sands, very loose silt and lean clays were encountered to depths ranging from about 5 to 7 feet. The overburden soils were underlain by highly weathered to weathered sandstone interbedded with highly weathered to weathered shale with seams of highly weathered to weathered siltstone. The bedrock generally varies in color from various shades of red, gray and brown with some yellow seams. Highly weathered sandstone interbedded with highly weathered shale and siltstone are the predominant bedrock materials along this cut section.

Unconfined compressive strength tests performed on the sandstone and limestone bedrock materials resulted in values ranging from approximately 30 psi to 1,040 psi.

Cut Section 4 - Stations 146+00 to 167+25

Six borings, designated CS-9 to CS-14, were drilled between the above mentioned stations to depths of approximately 26.5 to 35 feet below the existing ground surface. Exposed highly

Cut Sections • I-35 over Waterloo Road Interchange • Oklahoma and Logan Counties, Oklahoma • March 22, 2019 • Terracon Project No. 03185253

weathered to weathered sandstone and highly weathered shale bedrock was encountered at the ground surface near borings CS-9 to CS-14.

The overburden soils generally consisted of very loose to very dense silty or clayey sand, and very stiff to hard lean clays extending to depths of about 5 to 6.3 feet below existing grade in borings C-9 to CS-13. The overburden soils extended to a depth of about 25 feet in boring CS-14. The overburden soils were underlain by highly weathered to weathered sandstone interbedded with highly weathered to weathered shale with seams of highly weathered siltstone. The bedrock generally varies in color from various shades of red, yellow, gray and brown. Highly weathered sandstone interbedded with highly weathered shale with siltstone seams are the predominant bedrock materials along this portion of the project.

Unconfined compressive strength tests performed on the bedrock materials resulted in values ranging from 20 psi to 2,270 psi.

Cut Section 5 (Waterloo Road)- Stations 94+00 to 97+50

One boring, designated CS-15 was drilled between the above listed stations to a depth of approximately 20 feet below the existing ground surface. Exposed highly weathered to weathered sandstone bedrock was encountered at the ground surface near boring CS-15.

The overburden soils generally consisted of loose clayey sand, extending to a depth of about 5 feet below existing grade in the boring. The overburden soils were underlain by highly weathered to weathered sandstone with highly weathered shale seam. The bedrock generally varies in color from various shades of brown, red and gray.

Unconfined compressive strength tests performed on the bedrock materials resulted in values ranging of 710 psi and 730 psi.

3.3 Groundwater

The boreholes were observed while drilling for the presence and level of groundwater. Because drilling fluid was introduced into the borings, groundwater observations were made prior to the introduction of drilling fluid. Water was bailed from the borings after boring completion. Water levels were then measured in the boreholes at least 24 hours after boring completion. Groundwater observations are summarized in the following table.

Boring	While Drilling	After Boring	24 Hours After Drilling
	(Depth / Elevation) (ft.)	(Depth / Elevation) (ft.)	(Depth / Elevation) (ft.)
CS-1	None to 10 feet ¹	Not measured	14.5 ft /1,121.7 ft (Dry Cave In)

Cut Sections • I-35 over Waterloo Road Interchange • Oklahoma and Logan Counties, Oklahoma • March 22, 2019 • Terracon Project No. 03185253

Boring	While Drilling (Depth / Elevation) (ft.)	After Boring (Depth / Elevation) (ft.)	24 Hours After Drilling (Depth / Elevation) (ft.)
CS-2	None to 5.5 feet ¹	Not measured	21.0 ft / 1,115 ft
CS-3	None to 5.5 feet ¹	Not measured	19.5 ft / 1,087.5 ft
CS-4	None to 5.5 feet ¹	Not measured	19.0 ft / 1,107.9 ft (Dry Cave In)
CS-5	None to 5 feet ¹	Not measured	28.0 ft / 1,105.3 ft
CS-6	None to 10.5 feet ¹	Not measured	25.5 ft / 1,116.7 ft
CS-7	None to 5 feet ¹	Not measured	39.0 ft / 1,104.7
CS-8	None to 5 feet ¹	Not measured	Dry
CS-9	None to 5 feet ¹	Not measured	29.5 ft / 1,096.5 ft
CS-10	None to 5 feet ¹	Not measured	34.5 ft / 1,100.0 ft
CS-11	None to 5 feet ¹	Not measured	34.5 ft / 1,104.3
CS-12	None to 5 feet ¹	Not measured	Dry
CS-13	None to 5 feet ¹	Not measured	Dry
CS-14	Not Encountered	Not measured	Dry
CS-15	None to 5 feet ¹	Not measured	17.5 ft / 1,112.1 (Dry Cave In)

¹ Water was not encountered while drilling before fluid was introduced.

To obtain more accurate groundwater level information, longer observations in a monitoring well or piezometer that is sealed from the influence of surface water would be needed. Fluctuations in the groundwater level should be expected due to seasonal variations in the amount of rainfall, runoff and other factors not apparent at the time the borings were drilled. Evaluation of these factors and their effect on the groundwater levels is beyond the scope of this report. The possibility of groundwater level fluctuations and the presence of perched water should be considered when designing and developing the construction plans for the project.

4.0 RECOMMENDATIONS FOR DESIGN AND CONSTRUCTION

4.1 Geotechnical Considerations

Stability of overburden soils is typically controlled by the type of soil, the presence of groundwater, the presence of surficial water, and the cut slope. Stability of slopes in rock is

Cut Sections • I-35 over Waterloo Road Interchange • Oklahoma and Logan Counties, Oklahoma • March 22, 2019 • Terracon Project No. 03185253

typically controlled by the presence and orientation of bedding, joints, fractures or other discontinuities in the rock mass. The orientation of bedding in the rock along the alignment is relatively flat, and therefore, not adverse to the proposed cuts. However, the jointing and weak sandstone/shale could create unstable slopes.

Groundwater was encountered at depths ranging from 14.5 to 39 feet in the borings except for borings CS-8, CS-12, CS-13 and CS-14 that were dry by the time of water measurement. Localized seepage levels could be encountered during excavation and affect certain areas of some of the cuts. The groundwater conditions observed were modeled in the stability analyses.

We understand that sandstone/shale materials obtained during the excavation process will be used as fill materials for the construction of the adjacent embankments. Sandstones and shales should be watered during excavation of the cut sections to speed up the slaking and to facilitate the processing of these materials to a soil-like consistency. We recommend that the watering process start before hauling these materials to the fill sections.

Recommendations regarding design and construction of cut slopes, and bedrock rippability assessment are provided below.

4.2 Cut Slope Evaluations

Various geotechnical exploration and evaluation procedures were employed for the project to obtain necessary subsurface information to provide recommendations for the cut slopes proposed within the alignment. These included:

- Exploratory borings
- Seismic Refraction surveys
- Examining rock cores for rock decomposition, weathering, jointing, and fracture characteristics
- Determining the Rock Quality Designation (RQD) of the core samples
- Performing laboratory tests to obtain strength information for the soils and rock
- Gathering dip and dip direction measurements of representative geologic outcrops found along the proposed roadway where cut slopes are planned
- Conducting global slope stability analyses using the software program SLOPE/W 2016, version 8.16, by Geo-Slope International

4.3 Stability Analysis

Slope stability analyses of cut slopes were performed for critical cross-sections using the computer program SLOPE/W 2016, version 8.16, by Geo-Slope International. The slope

Cut Sections • I-35 over Waterloo Road Interchange • Oklahoma and Logan Counties, Oklahoma • March 22, 2019 • Terracon Project No. 03185253

stability analyses were conducted using the Morgenstern-Price methodology using a search routine and non-linear failure surface optimization to identify non-linear critical failure surfaces. Stability was analyzed for the drained (long-term) condition.

Stability of cut slopes was evaluated at locations within each cut section where Terracon borings were located so that the geologic conditions could be modeled. Please note that some variations within the cuts may occur due to the relative geometry of the proposed roadway and natural variations in subsurface conditions. The profiles used in our analyses were based on the borings drilled for this project and our onsite observations.

Based on the results of our borings, laboratory testing results, and our field observations, the bedrock has different degrees of jointing and fracturing in the horizontal and vertical directions. The bedding of bedrock is generally near horizontal and not expected to provide failure paths. Shear strength parameters for the soil and rock were modeled in our analysis based on field and laboratory test results, available correlations, and our experience with similar soils. The soil and rock properties used in our analyses are summarized in the following table.

	Total Unit	Shear Strer	ngth Parameters
Material	Weight	Cohesion, c	Friction Angle,
	(pcf)	(psf)	φ (deg.)
Clayey Sand (SC)	120	0	28
Silty Sand (SM)	120	0	28
Lean Clay with Sand to Sandy Lean Clay (CL)	120	0	28
Lean Clay (CL)	120	0	27
Shaley Lean Clay/ Weathered to Highly Weathered Shale	130	150	24
Highly Weathered to Weathered Sandstone/Siltstone	135	0	32

Based on the results of the global stability analyses, we recommend the cut slopes be inclined no steeper than 3H:1V for overburden soils and 2.5H:1V in the bedrock. The results of the stability analysis for the cut slopes are presented in the following table.

		Recomme	nded Slope	
Cut Slope	Analyzed Station	Overburden Soils (Lean Clay, Clayey Sands to Silty Sand)	Bedrock (Sandstone, Shale and Siltstone)	Calculated Factor of Safety (FOS)
Cut Slope 1 I-35 Southbound Station 113+00 to 119+00	116+00	3H:1V	2.5H:1V	1.8 (Exhibit D-1)

Cut Sections • I-35 over Waterloo Road Interchange • Oklahoma and Logan Counties, Oklahoma • March 22, 2019 • Terracon Project No. 03185253

		Recomme		
Cut Slope	Analyzed Station	Overburden Soils (Lean Clay, Clayey Sands to Silty Sand)	Bedrock (Sandstone, Shale and Siltstone)	Calculated Factor of Safety (FOS)
Cut Slope 2 I-35 Southbound Station 135+00 to 138+00	137+00	3H:1V	2.5H:1V	1.5 (Exhibit D-2)
Cut Slope 3 I-35 Southbound	153+00	3H:1V	2.5H:1V	1.6 (Exhibit D-3)
Station 149+00 to 167+25	159+00	3H:1V	2.5H:1V	1.6 (Exhibit D-4)
Cut Slope 4	152+00	3H:1V	2.5H:1V	1.6 (Exhibit D-5)
I-35 Northbound Station 146+00 to	158+00	3H:1V	2.5H:1V	1.7 (Exhibit D-6)
167+25	166+00	3H:1V	2.5H:1V	1.8 (Exhibit D-7)
Cut Slope 5 (Waterloo Rd.) Station 94+00 to 97.5+00	97+00	3H:1V	2.5H:1V	1.7 (Exhibit D-8)

See Exhibits D-1 through D-8 for the soil and rock parameters and profiles, and graphical outputs of the slope stability analyses.

4.4 Catchment Ditch

Complete design of a rock cut must consider and is contingent upon the appropriate configuration of the rockfall catchment ditch at the toe of the cut. If an adequate rockfall ditch can be designed, rockfall hazard to the roadway and traveling public can usually be reduced. The 2.5H:1V rock cut slopes do not require a catchment ditch analysis because they meet the minimal global stability requirements. The catchment ditch configuration shown in the ODOT typical sections of the ODOT Roadway Design Manual, shown in Appendix E-4, will provide the required typical ditch profile.

Cut Sections • I-35 over Waterloo Road Interchange • Oklahoma and Logan Counties, Oklahoma • March 22, 2019 • Terracon Project No. 03185253

4.5 Erosion and Drainage Considerations

To reduce the potential of surface water from running over the crest onto the slopes, we recommend surface drainage ditches be constructed along the top of the cut slopes a few feet behind the crest where necessary to intercept surface runoff from upslope. These ditches should discharge at locations beyond the ends of the cut to reduce the possibility of erosion due to water flow.

In the cut sections where moderate plasticity clay and/or shale are exposed, the soil and/or shale near the surface may expand and get weaker with time which may result in shallow surface or near surface sloughing. Shallow surface or near surface sloughing is generally considered a maintenance issue and should be addressed through operations and maintenance (O&M) procedures, such as observation of the slope on a periodic basis and after prolonged precipitation events.

Cut sections with exposed cohesionless materials are more subject to erosion and scour due to water flow over the cut face than cut faces that expose lean to fat clays and rock. We recommend that cut slopes be armored and/or well vegetated (with appropriate grass cover) to assist in reducing the influence of water that may flow over the face of the slope, regardless of material type. Vegetation can be established by either sodding, hydroseeding or seeding over at least 8 inches of topsoil. Water should be channeled away from the slope face to reduce the possibility of erosion due to water flow.

4.6 Bedrock Rippability Assessment

Terracon performed seismic refraction surveys at select locations along the alignment. The seismic refraction surveys were performed using the p-wave refraction method.

Ripper performance charts published in the Caterpillar Performance Handbook correlate seismic velocity values for various rock types with tractor size. Our bedrock rippability assessment was performed based on ripper performance charts published in the Caterpillar Performance Handbook (48th Edition, 2018). According to the Caterpillar Performance Handbook, sandstone bedrock materials with seismic velocities of up to about 6,300 feet per second (ft/s) should be rippable using a D8R/T multi or Single Shank Ripper. Sandstone with seismic velocities of up to about 8,500 ft/s should be marginally rippable using a D8R/T.

ODOT 2009 Construction Specifications considers that material can be classified as rock and considered as rock excavation when the rock mass has a seismic velocity of 7,900 ft/s or greater or that the rock mass cannot be loosened or broken down by ripping with a bulldozer with a minimum net flywheel power rating of 370 hp.

Cut Sections • I-35 over Waterloo Road Interchange • Oklahoma and Logan Counties, Oklahoma • March 22, 2019 • Terracon Project No. 03185253

A summary of the lines we tested and the approximate ranges of bedrock rippability based on seismic velocities at the mid-point of the line and the use of a D8R/T multi or Single Shank Ripper are provided in the following table. Please see the velocity models with the approximate boundaries for more detail (Exhibits B-1 to B-7).

Line	Stations	Borings	Rippable	Marginally Rippable	Non-Rippable
1	163+30 to 166+69	CS-8	To depths of	To depths of	Below depths of
	100100 10 100103	00 0	about 30'	about 40'	about 40'
2	150 , 70 to 154 , 00	CS-4	To depths of	To depths of	Below depths of
2	150+70 to 154+09	CS-5	about 35' to 40'	about 70'	about 70'
3	134+60 to 137+99	CS-3	To depths of	To depths of	Below depths of
3		US-3	about 20' to 25'	about 25' to 60'	about 25' to 60'
4	113+81 to 117+20	CS-1	To depths of	To depths of	Below depths of
4		CS-2	about 25' to 35'	about 65'	about 65'
5	155+20 to 158+59	CS-12	To depths of	To depths of	Below depths of
3		CS-13	about 20'	about 35' to 80'	about 35' to 80'
6	96+60 to 97+92	CS-15	To depths of	To depths of	Below depths of
	Waterloo Road	US-15	about 15' to 25'	about 17' to 30'	about 17' to 30'

The bedrock rippability assessment in the previous table, which is based on shear wave velocity, was performed based on ripper performance charts published in the Oklahoma Department of Transportation Geotechnical Specifications for Roadway Design, Appendix 3, and dated June 29, 2011. It must be realized that these are indicators only. The contractor bidding and performing the earthwork at this site should evaluate and determine for themselves the actual rippability of the rock and the excavation methods that will be required for this project.

Previous experience on ODOT projects using shear wave velocity as a guide to rippability of rock formations has proven reliable to our knowledge. However, a more conservative approach to establishing the depth to rippable rock might utilize engineering judgment based on a combination of seismic shear wave velocities, core log analysis and previous experience in the same or similar formation.

The rock formation is dependent upon a number of variables related to the rock mass including, but not limited to, discontinuity (joints/fractures/bedding) spacing and orientation, rock strength, angle of the equipment relative to the orientation of discontinuities, etc. Favorable conditions for rippability include frequent planes of weakness or discontinuities such as joints, fractures or laminations, weathering, moisture content, stratification, brittleness, and "lower" shear strength. Unfavorable conditions for rippability include massive rock with fewer planes of weakness, crystalline rocks, non-brittle energy-absorbing rock matrix, and "higher" shear strength. Other variables relative to rippability include the size of the equipment used, the skill of the operator,

Cut Sections • I-35 over Waterloo Road Interchange • Oklahoma and Logan Counties, Oklahoma • March 22, 2019 • Terracon Project No. 03185253

inclusions or "hard spots" in the rock, the condition of the equipment used, and the orientation of any planes of weakness such as fractures or layer bedding.

The table below provides guidance to the design engineer for depths below which excavation quantities might be considered as rock excavation if focusing on the use of a D8R/T bulldozer and its capacity to loosen or break down the rock. The table below considers seismic velocity data, rock core data (recovery, RQD and unconfined strength), and ODOT's recent experience with rock excavation in this formation.

Line	Stations	Borings	Rock Excavation Depths for Construction Earthwork Quantity Purposes*
1	163+30 to 166+69	CS-8	Below depths of about 5'
2	150+70 to 154+09	CS-4 CS-5	Below depths of about 5'
3	134+60 to 137+99	CS-3	Below depths of about 5'
4	113+81 to 117+20	CS-1 CS-2	Below depths of about 4' to 6'
5	155+20 to 158+59	CS-12 CS-13	Below depths of about 5'
6	96+60 to 97+92 Waterloo Road	CS-15	Below depths of about 5'

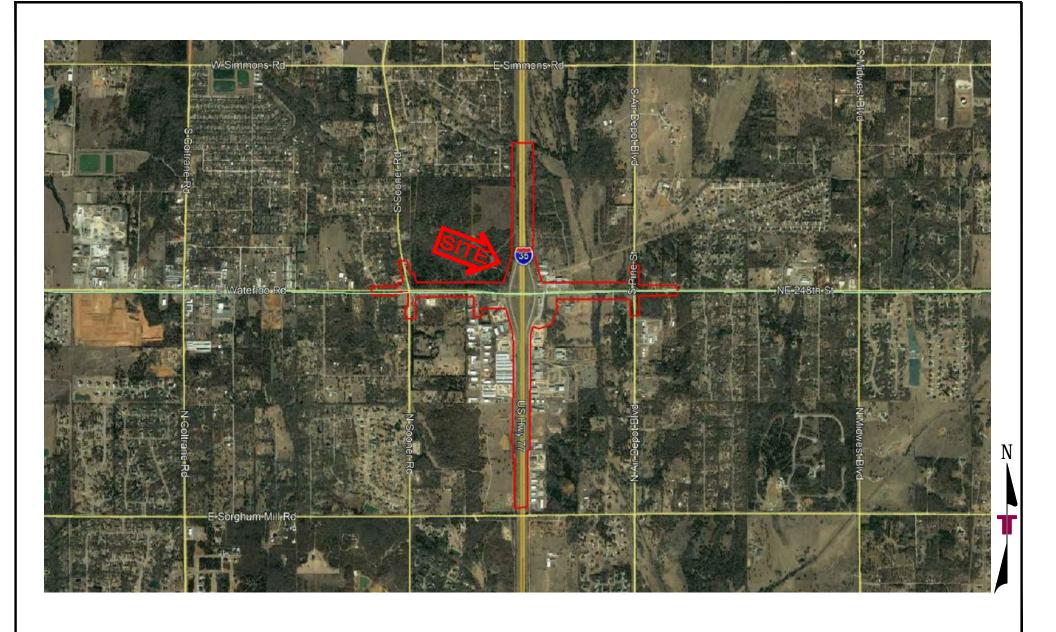
^{*} Please note that depths presented in this table are shallower than the depths provided in the previous table that is based purely on shear wave velocities results. Even though the shear wave velocity of the sandstone indicates that the rock is rippable in the top 15 to 40 feet, the contractor may encounter difficulty ripping the sandstone due to the lack of vertical fractures observed on the cores. The fractures that we did observe in the cores may be a result of mechanical breaks resulting from the coring process and may not be actual fractures in the bedrock.

5.0 GENERAL COMMENTS

Terracon Consultants, Inc. should be retained to review the final design plans and specifications so comments can be made regarding interpretation and implementation of our geotechnical recommendations in the design and specifications. Terracon Consultants, Inc. also should be retained to provide observation and testing services during grading, excavation, foundation construction and other earth-related construction phases of the project.

The analysis and recommendations presented in this report are based upon the data obtained from the borings performed at the indicated locations and from other information discussed in

Cut Sections • I-35 over Waterloo Road Interchange • Oklahoma and Logan Counties, Oklahoma • March 22, 2019 • Terracon Project No. 03185253



this report. This report does not reflect variations that may occur between borings, across the site, or due to the modifying effects of weather. The nature and extent of such variations may not become evident until during or after construction. If variations appear, we should be immediately notified so that further evaluation and supplemental recommendations can be provided.

The scope of services of this project does not include either specifically or by implication any environmental assessment of the site or identification of contaminated or hazardous materials or conditions. If the owner is concerned about the potential of such contamination, other studies should be undertaken.

This report has been prepared for the exclusive use of our client for specific application to the project discussed and has been prepared in accordance with generally accepted geotechnical engineering practices. No warranties, either expressed or implied, are intended or made. Site safety, excavation support, and dewatering requirements are the responsibility of others. In the event that any changes in the nature, design, or location of the project as outlined in this report are planned, the conclusions and recommendations contained in this report shall not be considered valid unless Terracon Consultants, Inc. reviews the changes, and either verifies or modifies the conclusions of this report in writing.

APPENDIX A FIELD EXPLORATION

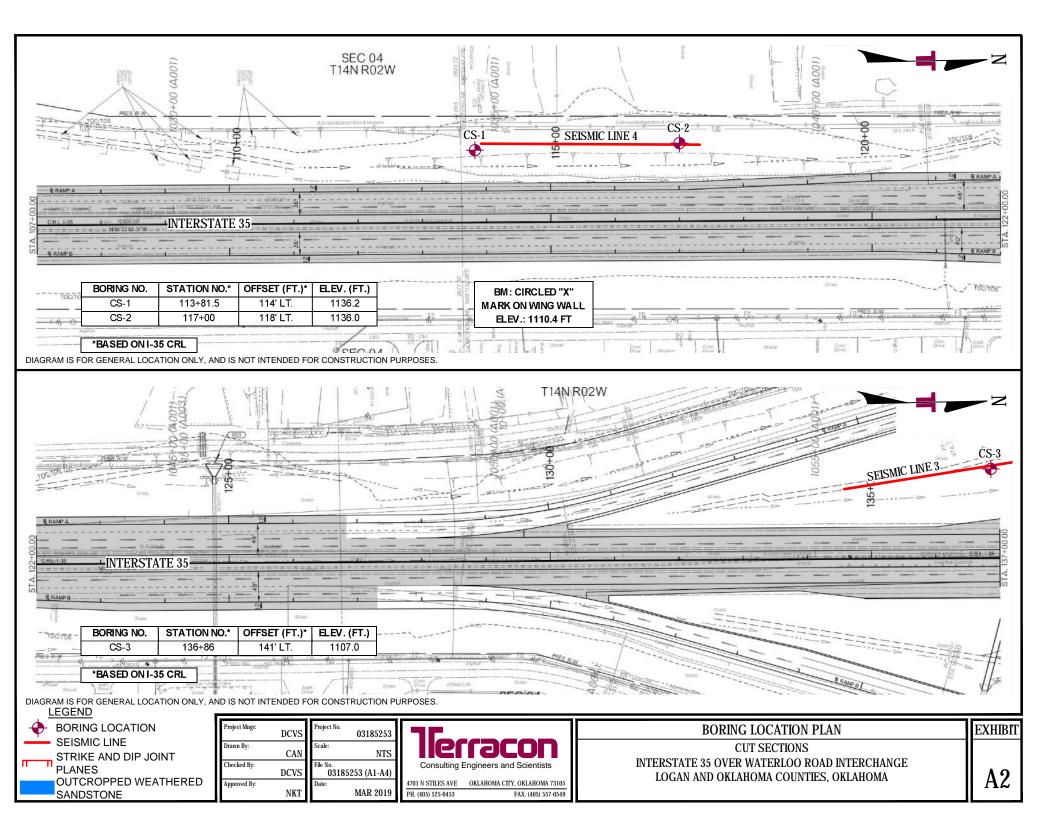
FAX. (405) 557-0549

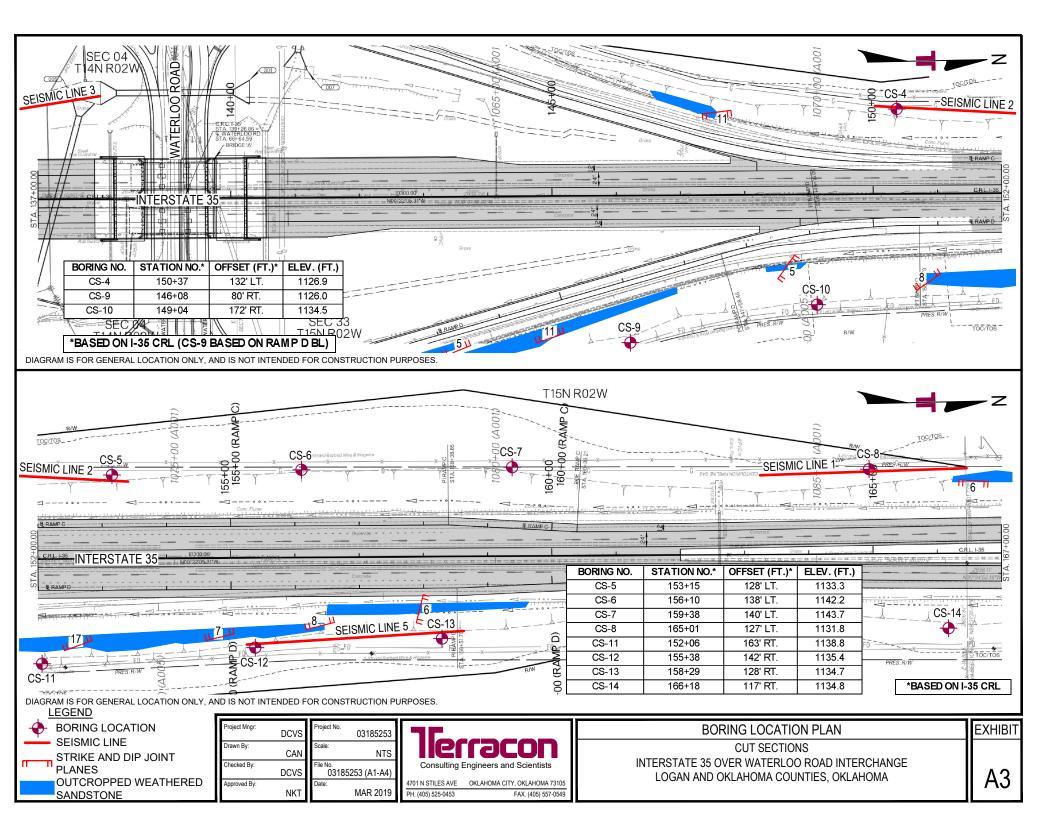
DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES.

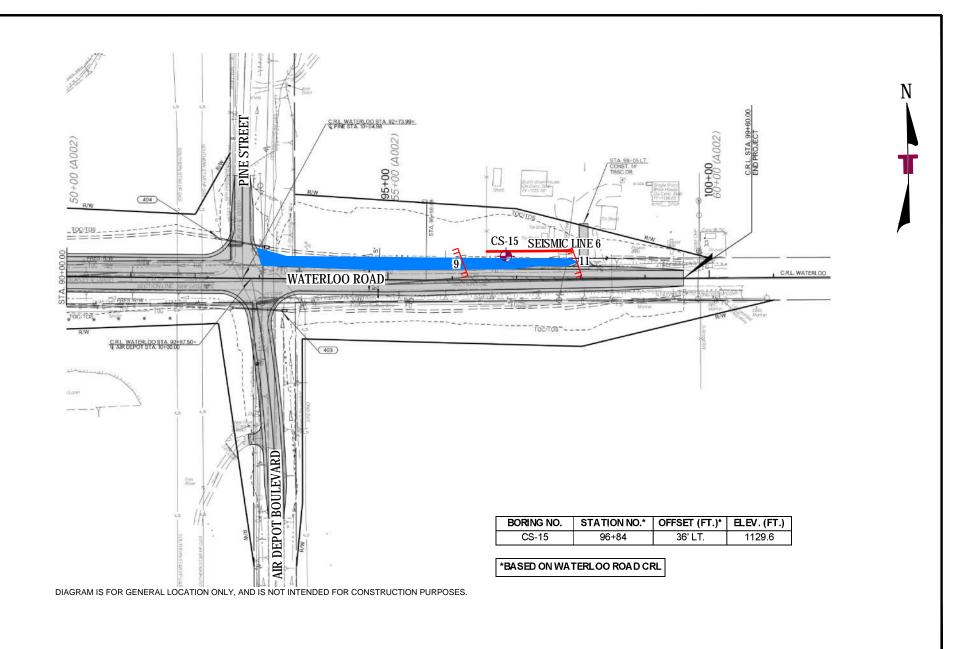
Project Mngr.	DCVS	Project No. 03185253
Drawn By:		Scale:
	CAN	NTS
Checked By:	DCVS	File No. 03185253 (A1-A4)
Approved By:	NKT	Date: MAR 2019
	INIXI	WAIC 2015

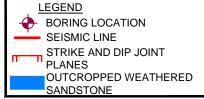
NTS
3 (A1-A4)

O3185253


NTS
Consulting Engineers and Scientists
4701 N STILES AVE OKLAHOMA CITY, OKLAHOMA 73105


PH. (405) 525-0453


SITE LOCATION PLAN


CUT SECTIONS INTERSTATE 35 OVER WATERLOO ROAD INTERCHANGE LOGAN AND OKLAHOMA COUNTIES, OKLAHOMA **EXHIBIT**

 \mathbf{A}^{1}

Project Mngr:	DCVS	Project No. 03185253
Drawn By:	CAN	Scale: NTS
Checked By:	DCVS	File No. 03185253 (A1-A4)
Approved By:	NKT	Date: MAR 2019

BORING LOCATION PLAN

CUT SECTIONS
INTERSTATE 35 OVER WATERLOO ROAD INTERCHANGE
LOGAN AND OKLAHOMA COUNTIES, OKLAHOMA

EXHIBI

A4

Cut Sections • I-35 over Waterloo Road Interchange • Oklahoma and Logan Counties, Oklahoma • March 22, 2019 • Terracon Project No. 03185253

Field Exploration Description

Geotechnical Borings

The boring locations were initially established in the field by Terracon personnel using a handheld GPS device. The boring location coordinates were obtained based on the drawings provided to us by the client. Terracon determined the approximate ground surface elevations at the borings using an engineer's level. These elevations were referenced to BMs # 116, 117 and 119 and by the X mark on the northeast wing wall Southbound I-35 bridge over Waterloo Road and using reported elevations as shown on the boring location plans in Appendix A. Based on these benchmarks, the ground surface elevations at the boring locations ranged from 1,107 to 1,143.7 feet. The elevations shown on the boring logs have been rounded to the nearest 0.1 foot. The boring stations, offsets and elevations should be considered accurate only to the degree implied by the methods used to define them.

The borings were drilled with ATV-mounted rotary drill rigs using continuous flight solid-stem augers to advance the boreholes and rock coring techniques. Samples of the soil encountered in the borings were obtained using the split barrel and thin-walled tube sampling procedure. In the split-barrel sampling procedure, the number of blows required to advance a standard 2-inch O.D. split-barrel sampler the last 12 inches of the typical total 18-inch penetration by means of a 140-pound auto-hammer with a free fall of 30 inches, is the standard penetration resistance value (SPT-N). This value is used to estimate the in-situ relative density of cohesionless soils, consistency of cohesive soils, and hardness of weathered bedrock. In the thin-walled tube sampling procedure, a seamless steel tube with a sharpened cutting end is hydraulically pushed into the bortom of the boring to obtain a relatively undisturbed cohesive soil sample.

An automatic SPT hammer was used to advance the split-barrel sampler in the borings. A significantly greater efficiency is achieved with the automatic hammer compared to the conventional safety hammer operated with a cathead and rope. This higher efficiency has an appreciable effect on the SPT-N value. The effect of the automatic hammer's efficiency has been considered in the interpretation and analysis of the subsurface information for this report.

We cored the bedrock from all borings, except for boring CS-14, using a NX-size diamond bit core barrel. After the core samples were retrieved, they were placed in a core box and logged. The rock was visually classified and the percent recovery and Rock Quality Designation (RQD) was determined for each core run. The percent recovery is a ratio of the recovered sample length to the cored length, expressed as a percentage. The RQD is the summation core pieces at least 4 inches in length divided by the length of core run, expressed as a percentage.

The sampling depths, penetration distances, and N values are reported on the boring logs. The samples were tagged for identification, sealed to reduce moisture loss and taken to the

Cut Sections • I-35 over Waterloo Road Interchange • Oklahoma and Logan Counties, Oklahoma • March 22, 2019 • Terracon Project No. 03185253

laboratory for further examination, testing and classification. A field log of each boring was prepared by the drill crew. These logs included visual classifications of the materials encountered during drilling as well as the driller's interpretation of the subsurface conditions between samples. Final boring logs included with this report represent the engineer's interpretation of the field logs and include modifications based on laboratory observation and tests of the samples.

Seismic Refraction Test

Terracon also performed seismic refraction surveys at 6 cut sections using the p-wave refraction method. Survey locations and their spacing were as followings:

- Line 1 was located to supplement boring CS-8. Located on the west side of the existing road, it was a 339-foot linear array trending north to south utilizing 13 foot spaced geophones (24 geophones) with 5 shot locations.
- Line 2 was located to supplement borings CS-4 and CS-5. Located on the west side of the existing road, it was a 339-foot linear array trending north to south utilizing 13 foot spaced geophones (24 geophones) with 5 shot locations.
- n Line 3 was located to supplement boring CS-3. Located on the west side of the existing road, it was a 339-foot linear array trending northwest to southeast utilizing 13 foot spaced geophones (24 geophones) with 5 shot locations.
- n Line 4 was located to supplement borings CS-1 and CS-2. Located on the west side of the existing road, it was a 339-foot linear array trending north to south utilizing 13 foot spaced geophones (24 geophones) with 5 shot locations.
- n Line 5 was located to supplement boring CS-12 and CS-13. Located on the east side of the existing road, it was a 339-foot linear array trending north to south utilizing 13 foot spaced geophones (24 geophones) with 5 shot locations.
- Line 6 was located to supplement boring CS-15. Located on the north side of the existing Waterloo Road, it was a 132-foot linear array trending west to east utilizing 4 foot spaced geophones (24 geophones) with 5 shot locations.

A shot location is a spot where the source, in this case a 16 lb. sledgehammer and source plate was activated to create the p-waves. At each shot location, 6 to 10 hammer swings were recorded and stacked to make one shot. The geophones were triggered by the source, and a 0.5 second data set with a 0.125 millisecond sample interval was recorded for each shot. Geophone and shot location elevations were collected with a GPS system, yielding a topographic profile of the array.

Cut Sections • I-35 over Waterloo Road Interchange • Oklahoma and Logan Counties, Oklahoma • March 22, 2019 • Terracon Project No. 03185253

The data sets for each shot location were combined and first break points were chosen. First break points are the time it takes the first p-wave to arrive at each of the 24 geophones. Using only the first break points and survey geometry, the data is forward modeled using a non-linear optimization technique called adaptive simulated annealing. This algorithm determines the p-wave velocity model with the minimum travel-time error without searching through every possible model. This method yields a true 2-D profile along the array.

The data sets for each shot location were combined and first break points were chosen. First break points are the time it takes the first p-wave to arrive at each of the 24 geophones. Using only the first break points and survey geometry, the data is forward modeled using a non-linear optimization technique called adaptive simulated annealing. This algorithm determines the p-wave velocity model with the minimum travel-time error without searching through every possible model. This method yields a true 2-D profile along the array.

	ВО	RIN	IG	LC	G	NO. CS-	·1					Page 1 of	<u>1_</u> _		
PR	PROJECT: Cut Sections I-35 over Waterloo Road Interchange					IENT: Garve Tulsa	er, LLC ı, Oklahon	na							
SIT	E: Interstate 35 & Waterloo Road Oklahoma & Logan Counties, Ok	lahor	na						_						
GRAPHICLOG	LOCATION See Exhibits A-2 to A-4 Latitude: 35.7181° Longitude: -97.4167° Station: 113+81.5 Offset: 114' LT Approximate Surface Elev.: 1136.2 (Ft.) +/- DEPTH ELEVATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	ROCK RECOVERY	RQD	UNCONFINED COMPRESSIVE STRENGTH (psi)	WATER CONTENT (%)	DRY UNIT WEIGHT (pdf)	ATTERBERG LIMITS	PERCENT FINES		
777.77	SILTY SAND (SM), weak red (10R 4/2), loose 1134.5+/-	-		X	18	2-2-4 N=6				13					
	SANDY LEAN CLAY (CL), weak red (10R 4/2) and dark red (10R 3/6) 4.0 1132+/-	- -			21					16	110	38-13-25	69		
	CLAYEY SAND (SC), red (2.5YR 5/6) 6.0 1130+/- HIGHLY WEATHERED SHALE WITH	5 -		X	17	7-9-50/6"				14		35-16-19	45		
	SANDSTONE LAYERS, red (2.5YR 5/8)	-													
	-light red (2.5YR 6/6) below 10.5' -red (2.5YR 4/6) and light red (2.5YR 6/6)	10-		×	_ 1	50/3"				_ 5					
	below 11' -dusky red (2.5YR 3/2) and red (2.5YR 4/6)	- -		Ш	49		82	15	20	20	110				
	below 13.5' -with silt seams, red (2.5YR 4/6) and gray (GLEY 1 7/N) below 15'	15-							_						
	-reddish brown (2.5YR 4/3) and yellowish brown (10YR 5/6) below 18'	- -			58		97	63	160	12	127				
	-light reddish brown (5YR 6/3) and weak red (10R 5/4) below 20'	20-													
		-		П	59		98	8	490	16	109				
	Boring Terminated at 25 Feet	25													
Advan															
	Stratification lines are approximate. In-situ, the transition may be grad	dual.					Hammer Typ	e: Auton	natic						
	Classification estimated from core sample; petrographic analysis ma		other r	rock ty	/pes.		Lac								
0'- 1 10' - Aband Bori	0' Power Auger - 25' Wash Boring See procomment Method: See	Appendi edures a	x C for and add x E for	descr litiona	iption (I data (f field procedures of laboratory if any). of symbols and	Notes: Surface Cover Station and O	r: Grass ffset base	and Topso ed on I-35	oil CRL					
Daci	WATER LEVEL OBSERVATIONS						Boring Started:	12-12-20)18	Borin	na Comr	Deted: 12-12-20	018		
			21		7	con	Drill Rig: 880	12-20		+	Boring Completed: 12-12-2018 Driller: R. Smalley				
1993				Stiles A a City,		Project No.: 03185253 Exhibit: A-6									

	ВС	RIN	IG	LC	G	NO. CS	-4				ı	Page 1 of 1	1
PR	ROJECT: Cut Sections I-35 over Waterloo Interchange	Road	i		CL	IENT: Garve Tulsa	er, LLC n, Oklahon	na					
SIT	ΓΕ: Interstate 35 & Waterloo Road Oklahoma & Logan Counties, Ok	lahor	na										
GRAPHIC LOG	LOCATION See Exhibits A-2 to A-4 Latitude: 35.7281° Longitude: -97.4167° Station: 150+37 Offset: 136' LT Approximate Surface Elev.: 1126.9 (Ft.) +/-	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	ROCK RECOVERY	RQD	UNCONFINED COMPRESSIVE STRENGTH (psi)	WATER CONTENT (%)	DRY UNIT WEIGHT (pdf)	ATTERBERG LIMITS	PERCENT FINES
	DEPTH ELEVATION (Ft.) SILTY SAND (SM), dark reddish brown (5YR 3/4), loose	-		X	18	1-2-3 N=5				9		NP	17
SPAPHIC LOG	1122+/ 35.5 HIGHLY WEATHERED SILTSTONE, red (2.5YR 5/6), pink (5YR 7/3) and light gray (GLEY1 7/N), soft HIGHLY WEATHERED SANDSTONE, reddish yellow (5YR 6/8), dark reddish brown (5 YR 3/3) and pink (5YR 7/4)	5-	- - - - -		6 49	50/6"	82	22	770	10	110		
	-reddish yellow (5YR 6/6) and light red (2.5YR 6/8). weathered below 10.5' 15.5 HIGHLY WEATHERED SHALE, reddish	10-	-		58		97	87	30	15	115		
	brown (2.5YR 5/3) 18.5 HIGHLY WEATHERED SANDSTONE, light red (2.5YR 6/6)	20-			60		100	17	140	9	135		
	-reddish brown (2.5YR 5/3) and reddish yellow (5YR 6/8) below 20.5'	- - - 25-			57		95	22	110	11	128		
Advant	Boring Terminated at 25.5 Feet Stratification lines are approximate. In-situ, the transition may be gran	dual					Hammer Typ	e: Auton	natic				
Advan	Classification estimated from core sample; petrographic analysis ma	y confirm											
0'- 5 5.5' Aband Bori	5.5' Power Auger - 25.5' Wash Boring See production of the state of th	Appendi cedures a	x C for and add x E for	descr itiona	iption o I data (of field procedures of laboratory if any). of symbols and	Notes: Surface Cover Station and O	: Grass ffset base	and Topsc ed on I-35	oil CRL			
	WATER LEVEL OBSERVATIONS	16				con	Boring Started:	12-10-20	118	Borin	g Comp	oleted: 12-11-20)18
				_	Stiles A	100	Drill Rig: 880			Drille	er: R. Sm	nalley	
2936	19' Dry Cave In After 24 Hours				a City,		Project No.: 031	85253		Exhib	oit:	A-9	

	В	ORIN	IG	LC	G	NO. CS	-6				F	Page 2 of 2	2	
PI	PROJECT: Cut Sections I-35 over Waterloo F Interchange			CLIENT: Garver, LLC Tulsa, Oklahoma										
SI	TE: Interstate 35 & Waterloo Road Oklahoma & Logan Counties, (Oklahoı	na											
GRAPHIC LOG	LOCATION See Exhibits A-2 to A-4 Latitude: 35.7297° Longitude: -97.4167° Station: 156+10 Offset: 138' LT Approximate Surface Elev.: 1142.2 (Ft.) DEPTH ELEVATION (Ft.)		WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	ROCK RECOVERY	RQD	UNCONFINED COMPRESSIVE STRENGTH (psi)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES	
ASE II.GPJ MODELLA	HIGHLY WEATHERED SHALE, red (2.5YR 4/8) (continued) -reddish yellow (5YR 6/8) below 32.5'	-			60		100	88	200	8	140			
0'- 10 Aban	Stratification lines are approximate. In-situ, the transition may be Classification estimated from core sample; petrographic analysis necessary from the cor	gradual. may confirm See Exhibit A See Appendi	A-5 for one of the contract of	descrip descri	ption o iption o I data (Hammer Type Notes:	e: Auton	natic					
ba ba	oring backfilled with cuttings above 4'; grouted 4' to 14'; ckfilled with cuttings from 14' to termination depth. WATER LEVEL OBSERVATIONS				10 10		Boring Started: 12-10-2018 Boring 9				ng Comp	eted: 12-10-20	 018	
BORIL							Drill Rig: 880			Drille	er: R. Sm	nalley		
	25.5 After 24 Hours				Stiles A a Citv.		Project No.: 03185253				Exhibit: A-11			

	ВС	RIN	IG I	LC	G	NO. CS	-7				ı	Page 2 of 2	2	
PR	OJECT: Cut Sections I-35 over Waterloo Interchange	Road	t		CL	IENT: Garve Tulsa	er, LLC a, Oklahon	na						
SIT	TE: Interstate 35 & Waterloo Road Oklahoma & Logan Counties, Ok	dahoi	ma											
GRAPHIC LOG	LOCATION See Exhibits A-2 to A-4 Latitude: 35.7306° Longitude: -97.4167° Station: 159+38 Offset: 140' LT Approximate Surface Elev.: 1143.7 (Ft.) +/- DEPTH ELEVATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	ROCK RECOVERY	RQD	UNCONFINED COMPRESSIVE STRENGTH (psi)	WATER CONTENT (%)	DRY UNIT WEIGHT (pdf)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES	
	WEATHERED SHALE, red (10R 4/8) (continued) 35.0 1108.5+/	- - - - 35-			53		88	78	110	11	131			
	WEATHERED SANDSTONE , dusky red (7.5R 3/4) and red (10R 5/6)	-			60		100	92	510	14	111			
	40.0 1103.5+/ Boring Terminated at 40 Feet	40-												
SETANALED TAKIN ONGINAL REFORM GAGANO WELL USE THIS ONE USED SOLD SECTIONS - TO SUCKE WATERLOOK OND TRACE LIGHT WORLD AND TRACE LIGH														
	Stratification lines are approximate. In-situ, the transition may be gra Classification estimated from core sample; petrographic analysis may		n other r	ock ty	ypes.		Hammer Typ	e: Auton	natic					
0'- 5 5' -	Second and the second and the second are second as the second are secon	e Appendi cedures a	ix C for and add	descr itiona	iption o	f field procedures of laboratory if any). of symbols and	Notes:							
NING C	WATER LEVEL OBSERVATIONS		3 6			con	Boring Started:	12-07-20)18			oleted: 12-07-20)18	
	▼ 39' After 24 Hours)1 N S	Stiles A a City,	ve	Drill Rig: 880 Driller: R Project No.: 03185253 Exhibit:					er: R. Smalley bit: A-12		

	ВО	RIN	IG I	LC	G	NO. CS	-8				ſ	Page 1 of	1
PR	OJECT: Cut Sections I-35 over Waterloo Interchange	Road	i		CL	IENT: Garve Tulsa	er, LLC ı, Oklahon	na					
SIT	TE: Interstate 35 & Waterloo Road Oklahoma & Logan Counties, Ok	lahor	na										
GRAPHIC LOG	LOCATION See Exhibits A-2 to A-4 Latitude: 35.7321° Longitude: -97.4167°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	ROCK RECOVERY	RQD	UNCONFINED COMPRESSIVE STRENGTH (psi)	WATER CONTENT (%)	DRY UNIT WEIGHT (pdf)	ATTERBERG LIMITS	PERCENT FINES
GRA	Station: 165+01 Offset: 127' LT Approximate Surface Elev.: 1131.8 (Ft.) +/- DEPTH ELEVATION (Ft.)	DEF	WATE	SAMF	RECO	필문	ROCK	_	COMF	S NO	WEIG	LL-PL-PI	PERCI
	SANDY SILT (ML), dark reddish gray (5YR 4/2), very loose LEAN CLAY (CL), yellowish red (5YR 5/6)	- -	_	X	18	2-1-2 N=3				15	-	NP	55
GRAPHIC LOG		-	_										
<i>//////</i>	5.0 1127+/- HIGHLY WEATHERED SANDSTONE, with conglomerate seams, pale red (7.5R 6/3) and weak red (7.5R 5/4)	5 – -	_	\times	4_	50/4"	7			_ 2			
	-dusky red (7.5R 3/2) and red (2.5YR 4/6) below 6'	- -	_		29		60	15	50	6	148		
	10.0 1122+/- HIGHLY WEATHERED SHALE, red (2.5YR 4/6)	10- -	_										
		_ _ _			52		87	48	50	18	113		
	HIGHLY WEATHERED SANDSTONE, red (2.5YR 4/6) and light gray (GLEY1 7/N)	15- - -							60	10	134		
		-	_		55		92	42					
		20-	-		41		68	43					
	-red (10R 5/6) below 23'	-	_		71			40	560	15	110		
	Boring Terminated at 25 Feet	25-											
	Stratification lines are approximate. In-situ, the transition may be grad Classification estimated from core sample; petrographic analysis may		other r	rock tv	/pes.		Hammer Typ	e: Auton	natic				
Advan	cement Method: See					f field procedures	Notes:						
5' -	See proconment Method:	Appendi edures a	x C for and add	descr itiona	iption o I data (of laboratory	Surface Cover Station and O	: Grass ffset bas	and Topso ed on I-35	oil CRL			
bac	kfilled with cuttings from 14' to termination depth.												
	WATER LEVEL OBSERVATIONS						Boring Started:	12-07-20)18			leted: 12-07-20)18
	Discoffee 24 Mayer		470)1 N S	Stiles A	ve	Drill Rig: 880	05050			er: R. Sm		
I	Dry after 24 Hours		Okla	ahoma	a City,	OK	Project No.: 031	85253		Exhil	bit: /	4-13	

	BO	RIN	G L	_0	G I	NO. CS-	10				F	Page 2 of 2	2
PF	ROJECT: Cut Sections I-35 over Waterloo Interchange	CL	IENT: Garve Tulsa	er, LLC a, Oklahon	na								
SI	TE: Interstate 35 & Waterloo Road Oklahoma & Logan Counties, Ok	lahoi	na										
GRAPHIC LOG	LOCATION See Exhibits A-2 to A-4 Latitude: 35.7278° Longitude: -97.4157° Station: 149+04 Offset: 174' RT Approximate Surface Elev.: 1134.5 (Ft.) +/- DEPTH ELEVATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	ROCK RECOVERY	RQD	UNCONFINED COMPRESSIVE STRENGTH (psi)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	ATTERBERG LIMITS	PERCENT FINES
X X X X X X X X X X X X X X X X X X X	32.0 1102.5+/- HIGHLY WEATHERED SANDSTONE, dusky red (10R 3/3) and red (10R 5/6)	-			60		100	68					
0'-	5' Power Auger 35' Wash Boring See	y confirm Exhibit	A-5 for o	descrip	ption o	of field procedures	Hammer Type Notes:	e: Autor	natic				
Aband Boil bad	donment Method: proc	procedures and addition See Appendix E for expl				(if any).							
	WATER LEVEL OBSERVATIONS			_			Boring Started:	12-18-20)18	Borir	ng Comp	leted: 12-18-20)18
	l lie					CON	Drill Rig: 880			Drille	er: R. Sm	nalley	
	34.5' After 24 Hours			01 N S ahoma	Stiles A a City.		Project No.: 031	85253		Exhil	oit: /	A-15	

PR	PROJECT: Cut Sections I-35 over Waterloo Road					IENT: Garve					F	Page 2 of 2	2
	Interchange	"	Tulsa	a, Oklahon	na								
SIT	E: Interstate 35 & Waterloo Road Oklahoma & Logan Counties, O	klahoi	ma										
90	LOCATION See Exhibits A-2 to A-4	G	WATER LEVEL OBSERVATIONS	'PE	(ln.)	<u> </u>	ROCK RECOVERY		NE (jsd)	(%	. (G	ATTERBERG LIMITS	ZES
GRAPHICLOG	Latitude: 35.7286° Longitude: -97.4157°	DEPTH (Ft.)	LEV ATIC	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	000	RQD	UNCONFINED COMPRESSIVE STRENGTH (psi)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)		PERCENT FINES
RAP	Station: 152+06 Offset: 163' RT Approximate Surface Elev.: 1138.8 (Ft.) +/-	EPT	ATER SERV	MPL	000	IELD RESI	关 	28	MPR	WA.	DRY EIGH	LL-PL-PI	SCEN
Ō	DEPTH ELEVATION (Ft.)		M M	SA	Ä		ROC		1988	ŏ	>		PEF
	HIGHLY WEATHERED SANDSTONE, trace conglomerate, weak red (10R 5/4)								720	15	109		
	(continued)			Ш	59		98	17					
				Ш									
	35.0 1104+	35											
	Boring Terminated at 35 Feet	35											
	Stratification lines are approximate. In situ, the transition may be greater	ndual					Hommor Tvo	o: Autor	notio				
	Stratification lines are approximate. In-situ, the transition may be gra Classification estimated from core sample; petrographic analysis m		n other	rock t	ypes.		Hammer Typ	e. Autor	ilauc				
Advano	cement Method:	o Evhibit	Λ E for	docori	intion o	of field procedures	Notes:						
0'- 5	' Power Auger	See Exhibit A-5 for descr											
5 - (126	See Appendix C for desc procedures and additional											
	donment Method: See Appendix E for expring backfilled with cuttings above 4': grouted 4' to 14': abbreviations.												
	Boring backfilled with cuttings above 4'; grouted 4' to 14'; backfilled with cuttings from 14' to termination depth.												
	WATER LEVEL OBSERVATIONS					- 1/20 1 12 1	Boring Started:	12-17-20)18	Borin	na Comn	leted: 12-17-20	018
	llerr					con	Drill Rig: 880	(er: R. Sm		
					Stiles A	Ave	Project No.: 03	185253		Exhil		۸-16	

DD.		_U	OG NO. CS-12 Page 1 of 1 CLIENT: Garver, LLC										
PR	OJECT: Cut Sections I-35 over Waterloo Interchange	CLI	ENT: Garve Tulsa	er, LLC a, Oklahor	na								
SIT	TE: Interstate 35 & Waterloo Road Oklahoma & Logan Counties, O	klahoı	ma										
2000	LOCATION See Exhibits A-2 to A-4 Latitude: 35.7295° Longitude: -97.4158°	(Ft.)	EVEL	TYPE	۲۲ (In.)	EST .TS	OVERY		INED SSIVE H (psi)	:R T (%)	NIT (pcf)	ATTERBERG LIMITS	FINES
GRAPHICLOG	Station: 155+38 Offset: 142' RT Approximate Surface Elev.: 1135.4 (Ft.) +/-		WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	ROCK RECOVERY	RQD	UNCONFINED COMPRESSIVE STRENGTH (psi)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LL-PL-PI	PERCENT FINES
	SILTY SAND (SM), strong brown (7.5YR 4/6), loose	_		X	16	2-3-3 N=6				13		NP	28
		-											
	5.0 1130.5+ HIGHLY WEATHERED SANDSTONE,	<u>-/-</u> 5 -			10	29-50/4"				8			
	reddish yellow (5YR 6/8) and yellowish red (5YR 5/8) -with silt seams, light gray (GLEY1 7/N) below 5'	-			48		100	0					
	-reddish yellow (5YR 6/8) and pink (7.5YR 7/3) below 10'	10-											
GRAPHIC LOG	-red (2.5YR 4/8), red (2.5YR 4/6) and very pale brown (10YR 7/3) below 15'	15-			60		100	12	650	20	103		
	pale brown (1011(7/3) below 13	-			60		100	40	710	15	110		
	-red (2.5YR 5/6), red (2.5YR 5/8) trace gray (GLEY1 7/N), weathered below 20'	20-			57		95	57					
	-shale seams, red (2.5YR 5/6), reddish yellow (7.5YR 6/6) and strong brown	25-							130	11	131		
	(7.5YR 5/8), highly weathered below 25'	-	-		60		100	0					
	30.0 1105.5+ Boring Terminated at 30 Feet	30-											
	Stratification lines are approximate. In-situ, the transition may be gra Classification estimated from core sample; petrographic analysis m		other i	rock ty	ypes.		Hammer Typ	e: Autor	natic				<u> </u>
0'- 5 5' - 3 Aband Bori	onment Method:	See Exhibit A-5 for described See Appendix C for descriprocedures and additional See Appendix E for explain abbreviations.				laboratory any).	Notes: Surface Cover: Grass and Topsoil Station and Offset based on I-35 CRL						
	WATER LEVEL OBSERVATIONS	7.					Boring Started:	12-06-20	018	Borin	ng Comp	leted: 12-06-20	018
						con	Drill Rig: 880			Drille	er: R. Sm	nalley	
1	Dry after 24 Hours			Stiles Av a City, C		Project No.: 03	185253		Exhil	oit:	A-17		

	BORING LOG NO. CS-13 Page 1 of 1													
F	PR	OJECT: Cut Sections I-35 over Waterloo Interchange	Road	i		CL	IENT: Garve Tulsa	er, LLC , Oklahor	na				-	
5	SIT	TE: Interstate 35 & Waterloo Road Oklahoma & Logan Counties, O	klahor	na										
YER.GPJ 2/13/19 GRAPHIC I OG		LOCATION See Exhibits A-2 to A-4 Latitude: 35.7303° Longitude: -97.4158° Station: 158+29 Offset: 128' RT Approximate Surface Elev.: 1134.7 (Ft.) +/-		WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	ROCK RECOVERY	RQD	UNCONFINED COMPRESSIVE STRENGTH (psi)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
MODELLA		DEPTH ELEVATION (Ft.) SILTY SAND (SM), dark reddish brown (5YR 3/2), very loose	-		X	18	1-1-2 N=3				11		NP	25
USE THIS ONE - 03185253 CUT SECTIONS - 1-35 OVER WATERLOO ROAD PHASE II.GPJ MODELLAYER.GPJ 2/13/19		5.0 1129.5+ HIGHLY WEATHERED SANDSTONE, yellow (10YR 8/6) and pale red (2.5YR 7/2) -trace roots, reddish yellow (5YR 6/8) and	- - - 5-	- - -	×	9	42-50/3"				5			
VER WATERL		red (10R 5/8) and light gray (GLEY1 7/N) below 5.5'	-			48		100	0	560	17	108		
CUT SECTIONS - 1-35 O		-weak red (10R 5/4), reddish brown (5YR 5/4) and dusky red (10R 3/3) , with conglomerate layers, weathered below 10'	10-	- - - -		59		98	50	580	18	106		
E THIS ONE - 03185253		15.0 1119.5+ WEATHERED SHALE, with conglomerate seams, red (10R 4/6). red (10R 4/8) and light gray (GLEY1 7/N)	15- - - -			57		95	72	70	15	122		
GEO SMART LOG-NO WELL US		-red (10R 4/6), pale brown (10YR 6/3) and reddish brown (2.5YR 4/4) below 20'	20-	- - -		55		92	88	70	15	118		
		-highly weathered below 25'	25-	-		57		95	0	130	10	130		
D FROM		Boring Terminated at 30 Feet	30-											
PARATE		Stratification lines are approximate. In-situ, the transition may be gra Classification estimated from core sample; petrographic analysis m		other r	rock ty	ypes.		Hammer Typ	e: Auton	natic	1			
S NOT VALID IF	0'- 5 5' - 3 ando Bori	Se pronument Method: ng backfilled with cuttings above 4'; grouted 4' to 14'; dilled with cuttings from 14' to termination depth.					station of laboratory lata (if any). Surface Cover: Grass and Topsoil Station and Offset based on I-35 CRL							
RING LC		WATER LEVEL OBSERVATIONS	16					Boring Started:	12-06-20)18			leted: 12-06-20)18
THIS BC	Dry after 24 Hours 4701 N							Drill Rig: 880 Driller: R. Smalley Project No.: 03185253 Exhibit: A-18						

				_0		NO. CS-					ı	Page 1 of	1
PR	OJECT: Cut Sections I-35 over Waterloo Interchange	Roac	i		CL	IENT: Garve Tulsa	er, LLC ı, Oklahon	na					
SIT	FE: Interstate 35 & Waterloo Road Oklahoma & Logan Counties, Ok	lahor	na										
0070	LOCATION See Exhibits A-2 to A-4 Latitude: 35.7325° Longitude: -97.4159°		_	TYPE	۲۲ (In.)	EST .TS	OVERY	0	SSIVE TH (psi)	ER IT (%)	NIT (pcf)	ATTERBERG LIMITS	FINES
GRAPHICLOG	Station: 166+18 Offset: 117' RT Approximate Surface Elev.: 1134.8 (Ft.) +/- DEPTH ELEVATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	ROCK RECOVERY	RQD	UNCONFINED COMPRESSIVE STRENGTH (psi)	WATER CONTENT (%)	DRY UNIT WEIGHT (pdf)	LL-PL-PI	PERCENT FINES
	CLAYEY SAND (SC), dark reddish brown (2.5YR 3/3), loose	-		X	18	2-3-4 N=7				14		27-16-11	37
	5.0 1130+/-	- -	_										
	SANDY LEAN CLAY (CL), red (2.5YR 5/8), very stiff	5 – - -		X	18	6-10-12 N=22				9		29-14-15	58
	10.0 1125+/-	-											
	SHALEY LEAN CLAY (CL), red (2.5YR 5/8), hard	10- - -		X	14	11-15-18 N=33				14			
	-red (2.5YR 4/6) below 15'	15-		X	14	15-19-26				11		43-20-23	92
		-				N=45							
		20-		X	17	12-14-16 N=30				12			
	25.0 1110+/- HIGHLY WEATHERED SANDSTONE,	- - 25-	-		1	50/1"				3			
<u>: : : : :</u>	dark red (2.5YR 3/6), well cemented Boring Terminated at 26.5 Feet	_											
	Stratification lines are approximate. In-situ, the transition may be grac Classification estimated from disturbed samples. Core samples and		hic and	alysis	may		Hammer Type	e: Auton	natic				
Pow Aband Bori	ver Auger See proconment Method: ng backfilled with cuttings above 4'; grouted 4' to 14'; see abb.	See Exhibit A-5 for descri See Appendix C for descri procedures and additional See Appendix E for expla abbreviations.				of laboratory if any).	Notes: Surface Cover Station and Of	: Grass ffset bas	and Topso ed on I-35	oil CRL			
bacl	kfilled with cuttings from 14' to termination depth. WATER LEVEL OBSERVATIONS					- 245 - 545 - 54	Boring Started: 12-06-2018 Boring Completed: 12-07-2018					 018	
						con	Drill Rig: 880				er: R. Sn		
					Stiles A		Project No.: 031	85253		Exhib		A-19	

	ВО	RIN	G L	_0	G I	NO. CS-	15				ſ	Page 1 of ²	1
PR	ROJECT: Cut Sections I-35 over Waterloo Interchange	Road	ł		CL	ENT: Garve Tulsa	er, LLC a, Oklahor	na					
SIT	ΓΕ: Interstate 35 & Waterloo Road Oklahoma & Logan Counties, Ok	lahor	na										
GRAPHIC LOG	LOCATION See Exhibits A-2 to A-4 Latitude: 35.7254° Longitude: -97.4061° Station: 96+84 Offset: 36' LT Approximate Surface Elev.: 1129.6 (Ft.) +/-	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	RECOVERY (In.)	FIELD TEST RESULTS	ROCK RECOVERY	RQD	UNCONFINED COMPRESSIVE STRENGTH (psi)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	ATTERBERG LIMITS	PERCENT FINES
	DEPTH ELEVATION (Ft.) CLAYEY SAND (SC), dark reddish brown (5YR 3/2) and red (2.5YR 4/6), loose	_		X	15	1-2-4 N=6				17	-	25-16-9	22
	5.0 5.5 WEATHERED SANDSTONE, dark reddish brown (2.5YR 3/4), well cemented HIGHLY WEATHERED SHALE, red (2.5YR 4/6) 8.5 HIGHLY WEATHERED SANDSTONE, light reddish brown (2.5YR 6/4), reddish light reddish brown (2.5YR 6/4), reddish	-			29	50/2"	53	0		6			
	brown (2.5YR 4/3) and light gray (GLEY 1 7/N) HIGHLY WEATHERED SILTY SANDSTONE, reddish brown (2.5YR 4/3) and red (2.5YR 4/6) 13.5 WEATHERED SANDSTONE, light reddish brown (2.5YR 6/4)	- -			55		92	22	710	17 17	108		
	20.0 1109.5+/- Boring Terminated at 20 Feet	20-											
	Stratification lines are approximate. In-situ, the transition may be grad						Hammer Typ	e: Auton	natic				
Advand	Classification estimated from core sample; petrographic analysis ma	-				field present	Notes:						
0'- 5 5' - 2 Abande Bori	5' Power Auger 20' Wash Boring See proc lonment Method: See abb kfilled with cuttings above 4'; grouted 4' to 14'; kfilled with cuttings from 14' to termination depth.	See Exhibit A-5 for descri See Appendix C for descri procedures and additionate See Appendix E for explainabbreviations.				of laboratory of any).	Surface Cover: Bare Soils Station and Offset based on Waterloo Road CRL						
	WATER LEVEL OBSERVATIONS						Boring Started:	12-18-20)18	Borin	ng Comp	oleted: 12-18-20)18
				_		CON	Drill Rig: 880			Drille	er: R. Sn	nalley	
0'- 5' Power Auger 5' - 20' Wash Boring See Appendix C for descriptocedures and addition Abandonment Method: Boring backfilled with cuttings above 4'; grouted 4' to 14'; backfilled with cuttings from 14' to termination depth. WATER LEVEL OBSERVATIONS WATER LEVEL OBSERVATIONS 17.5' Dry Cave In after 24 Hours							Project No.: 03°	185253		Exhil	bit:	A-20	

Cut Sections I-35 over Waterloo Road Interchange Oklahoma and Logan Counties, Oklahoma March 22, 2019 Terracon Project No. 03185253

10'

20'

Boring CS-1

Depth: 10' to 15' – Recovery: 85% - RQD: 15% Depth: 15' to 20' – Recovery: 97% - RQD: 63%

20'

25'

Boring CS-1

Depth: 20' to 25' - Recovery: 98% - RQD: 8%

Cut Sections I-35 over Waterloo Road Interchange Oklahoma and Logan Counties, Oklahoma March 22, 2019 Terracon Project No. 03185253

5.5'

15.5'

Boring CS-2

Depth: 5.5' to 10.5' – Recovery: 5% - RQD: 5% Depth: 10.5' to 15.5' – Recovery: 85% - RQD: 35%

15.5'

25.5'

Boring CS-2

Depth: 15.5' to 20.5' – Recovery: 100% - RQD: 96% Depth: 20.5' to 25.5' – Recovery: 100% - RQD: 28%

Cut Sections I-35 over Waterloo Road Interchange Oklahoma and Logan Counties, Oklahoma March 22, 2019 Terracon Project No. 03185253

5.5'

15.5'

Boring CS-3

Depth: 5.5' to 10.5' – Recovery: 37% - RQD: 37% Depth: 10.5' to 15.5' – Recovery: 100% - RQD: 18%

15.5'

25.5'

Boring CS-3

Depth: 15.5' to 20.5' – Recovery: 100% - RQD: 40% Depth: 20.5' to 25.5' – Recovery: 97% - RQD: 43%

Cut Sections I-35 over Waterloo Road Interchange Oklahoma and Logan Counties, Oklahoma March 22, 2019 Terracon Project No. 03185253

5.5'

15.5'

Boring CS-4

Depth: 5.5' to 10.5' – Recovery: 82% - RQD: 22% Depth: 10.5' to 15.5' – Recovery: 97% - RQD: 87%

15.5

25.5'

Boring CS-4

Depth: 15.5' to 20.5' – Recovery: 100% - RQD: 17% Depth: 20.5' to 25.5' – Recovery: 95% - RQD: 22%

Cut Sections I-35 over Waterloo Road Interchange Oklahoma and Logan Counties, Oklahoma March 22, 2019 Terracon Project No. 03185253

6'

15'

Boring CS-5

Depth: 6' to 10' – Recovery: 92% - RQD: 21% Depth: 10' to 15' – Recovery: 95% - RQD: 65%

15'

25'

Boring CS-5

Depth: 15' to 20' – Recovery: 95% - RQD: 65% Depth: 20' to 25' – Recovery: 100% - RQD: 25%

Cut Sections I-35 over Waterloo Road Interchange Oklahoma and Logan Counties, Oklahoma March 22, 2019 Terracon Project No. 03185253

25

30'

Boring CS-5

Depth: 25' to 30' - Recovery: 98% - RQD: 57%

10.5'

20.5'

Boring CS-6

Depth: 10.5' to 15.5' – Recovery: 77% - RQD: 60% Depth: 15.5' to 20.5' – Recovery: 98% - RQD: 20%

Cut Sections I-35 over Waterloo Road Interchange Oklahoma and Logan Counties, Oklahoma March 22, 2019 Terracon Project No. 03185253

20.5'

30.5

Boring CS-6

Depth: 20.5' to 25.5' – Recovery: 98% - RQD: 15% Depth: 25.5 to 30.5' – Recovery: 97% - RQD: 38%

30.5

35.5'

Boring CS-6

Depth: 30.5 to 35.5' - Recovery: 100% - RQD: 88%

Cut Sections I-35 over Waterloo Road Interchange Oklahoma and Logan Counties, Oklahoma March 22, 2019 Terracon Project No. 03185253

7

15'

Boring CS-7

Depth: 7 to 10' – Recovery: 42% - RQD: 0% Depth: 10' to 15' – Recovery: 93% - RQD: 0%

15'

25'

Boring CS-7

Depth: 15 to 20' – Recovery: 73% - RQD: 17% Depth: 20' to 25' – Recovery: 92% - RQD: 37%

Cut Sections I-35 over Waterloo Road Interchange Oklahoma and Logan Counties, Oklahoma March 22, 2019 Terracon Project No. 03185253

25'

35'

Boring CS-7

Depth: 25 to 30' – Recovery: 98% - RQD: 57% Depth: 30 to 35' – Recovery: 88% - RQD: 78%

35'

40'

Boring CS-7

Depth: 35' to 40' - Recovery: 100% - RQD: 92%

Cut Sections I-35 over Waterloo Road Interchange Oklahoma and Logan Counties, Oklahoma March 22, 2019 Terracon Project No. 03185253

6'

15'

Boring CS-8

Depth: 6' to 10' – Recovery: 60% - RQD: 15% Depth: 10 to 15' – Recovery: 87% - RQD: 48%

15'

25'

Boring CS-8

Depth: 15 to 20' – Recovery: 92% - RQD: 42% Depth: 20 to 25' – Recovery: 68% - RQD: 43%

Cut Sections I-35 over Waterloo Road Interchange Oklahoma and Logan Counties, Oklahoma March 22, 2019 Terracon Project No. 03185253

5.5'

15'

Boring CS-9

Depth: 5.5' to 10' – Recovery: 91% - RQD: 0% Depth: 10' to 15' – Recovery: 93% - RQD: 33%

15'

25'

Boring CS-9

Depth: 15 to 20' – Recovery: 100% - RQD: 75% Depth: 20 to 25' – Recovery: 100% - RQD: 23%

Cut Sections I-35 over Waterloo Road Interchange Oklahoma and Logan Counties, Oklahoma March 22, 2019 Terracon Project No. 03185253

25'

30'

Boring CS-9

Depth: 25' to 30' - Recovery: 98% - RQD: 38%

5.5'

15'

Boring CS-10

Depth: 5.5 to 10' – Recovery: 83% - RQD: 9% Depth: 10 to 15' – Recovery: 97% - RQD: 0%

Cut Sections I-35 over Waterloo Road Interchange Oklahoma and Logan Counties, Oklahoma March 22, 2019 Terracon Project No. 03185253

15'

25'

Boring CS-10

Depth: 15' to 20' – Recovery: 95% - RQD: 80% Depth: 20' to 25' – Recovery: 100% - RQD: 77%

25'

35'

Boring CS-10

Depth: 25 to 30' – Recovery: 100% - RQD: 0% Depth: 30 to 35' – Recovery: 100% - RQD: 68%

Cut Sections I-35 over Waterloo Road Interchange Oklahoma and Logan Counties, Oklahoma March 22, 2019 Terracon Project No. 03185253

7'

15'

Boring CS-11

Depth: 7' to 10' - Recovery: 100% - RQD: 0% Depth: 10' to 15' - Recovery: 82% - RQD: 0%

15'

25'

Boring CS-11

Depth: 15 to 20' – Recovery: 100% - RQD: 40% Depth: 20 to 25' – Recovery: 100% - RQD: 63%

Cut Sections I-35 over Waterloo Road Interchange Oklahoma and Logan Counties, Oklahoma March 22, 2019 Terracon Project No. 03185253

25'

35'

Boring CS-11

Depth: 25' to 30' – Recovery: 98% - RQD: 50% Depth: 30' to 35' – Recovery: 98% - RQD: 17%

6'

15'

Boring CS-12

Depth: 6 to 10' – Recovery: 100% - RQD: 0% Depth: 10 to 15' – Recovery: 100% - RQD: 12%

Cut Sections I-35 over Waterloo Road Interchange Oklahoma and Logan Counties, Oklahoma March 22, 2019 Terracon Project No. 03185253

15'

25'

Boring CS-12

Depth: 15' to 20' – Recovery: 100% - RQD: 40% Depth: 20' to 25' – Recovery: 95% - RQD: 57%

25'

30'

Boring CS-12

Depth: 25 to 30' - Recovery: 100% - RQD: 0%

Cut Sections I-35 over Waterloo Road Interchange Oklahoma and Logan Counties, Oklahoma March 22, 2019 Terracon Project No. 03185253

6'

15'

Boring CS-13

Depth: 6' to 10' – Recovery: 100% - RQD: 0% Depth: 10' to 15' – Recovery: 98% - RQD: 50%

15'

25'

Boring CS-13

Depth: 15 to 20' – Recovery: 95% - RQD: 72% Depth: 20 to 25' – Recovery: 92% - RQD: 88%

Cut Sections I-35 over Waterloo Road Interchange Oklahoma and Logan Counties, Oklahoma March 22, 2019 Terracon Project No. 03185253

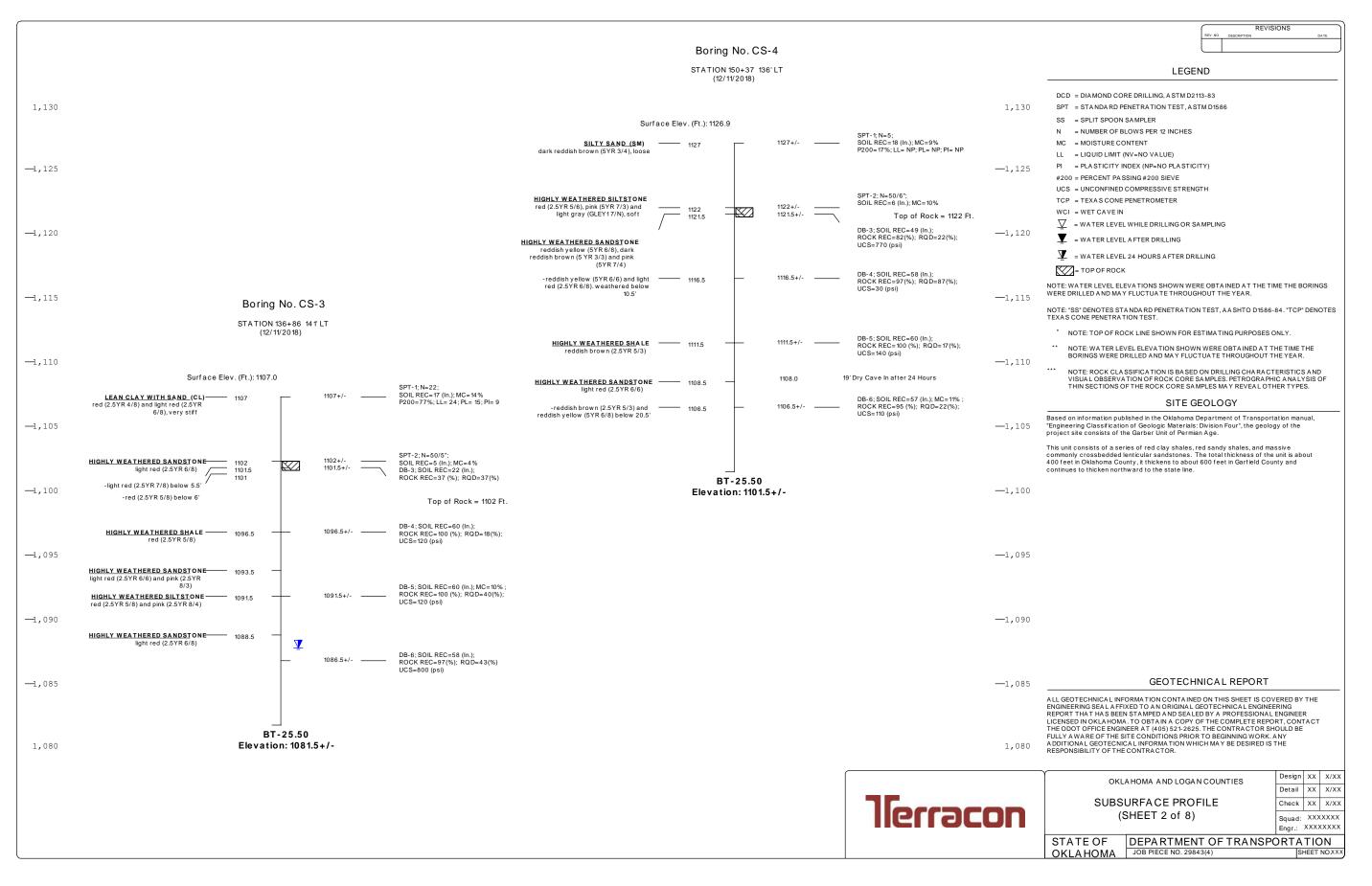
25'

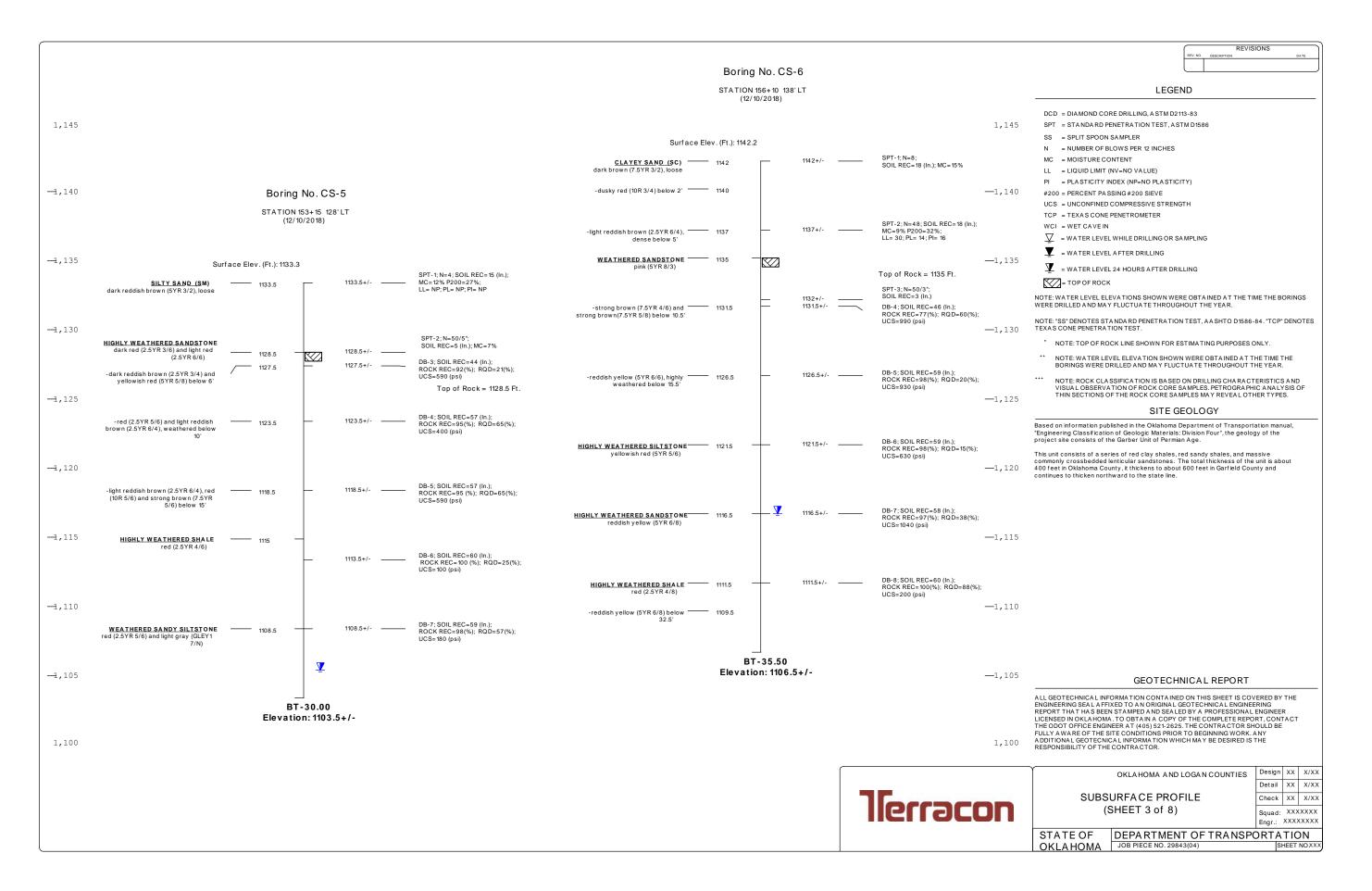
30'

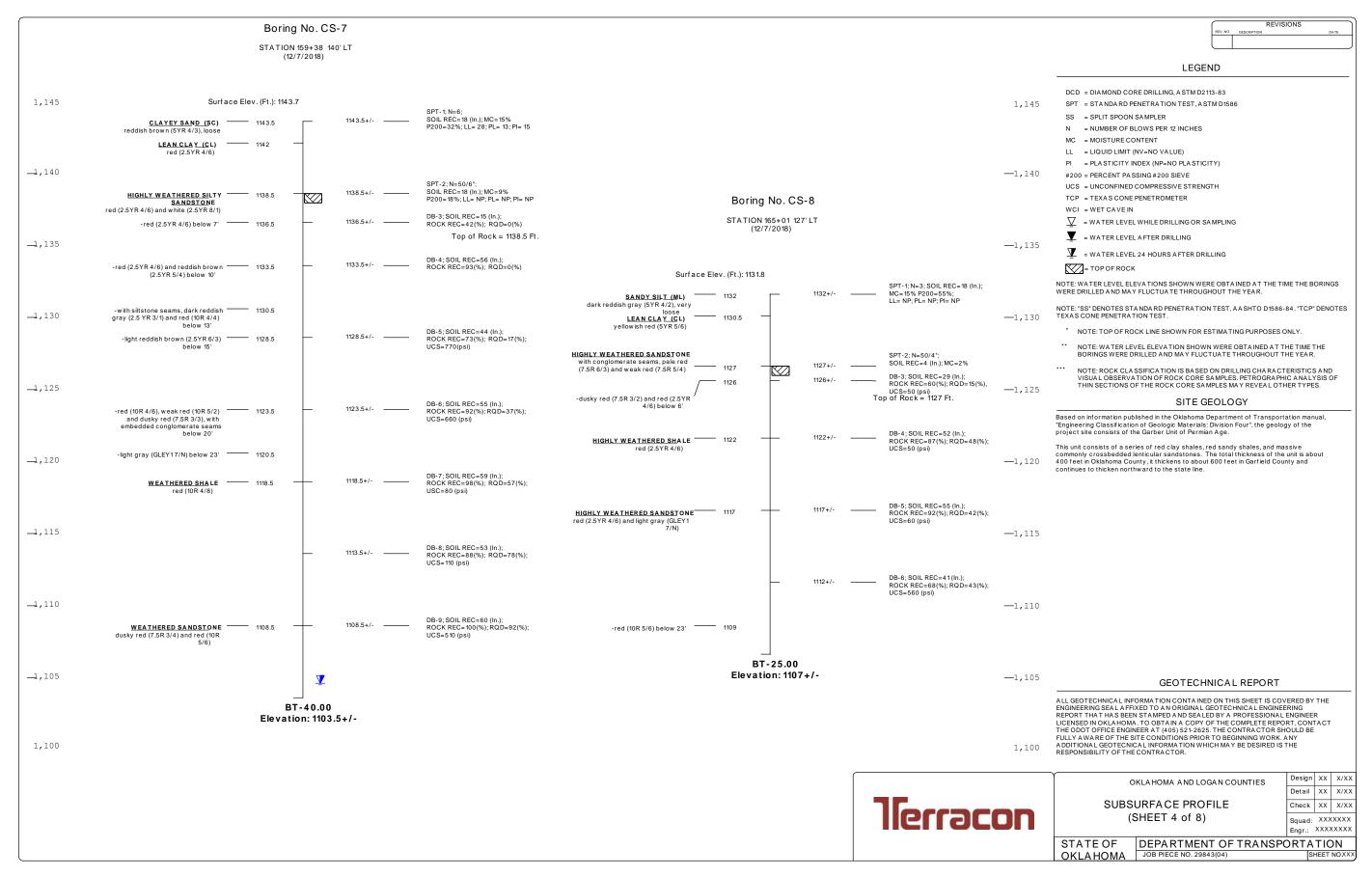
Boring CS-13

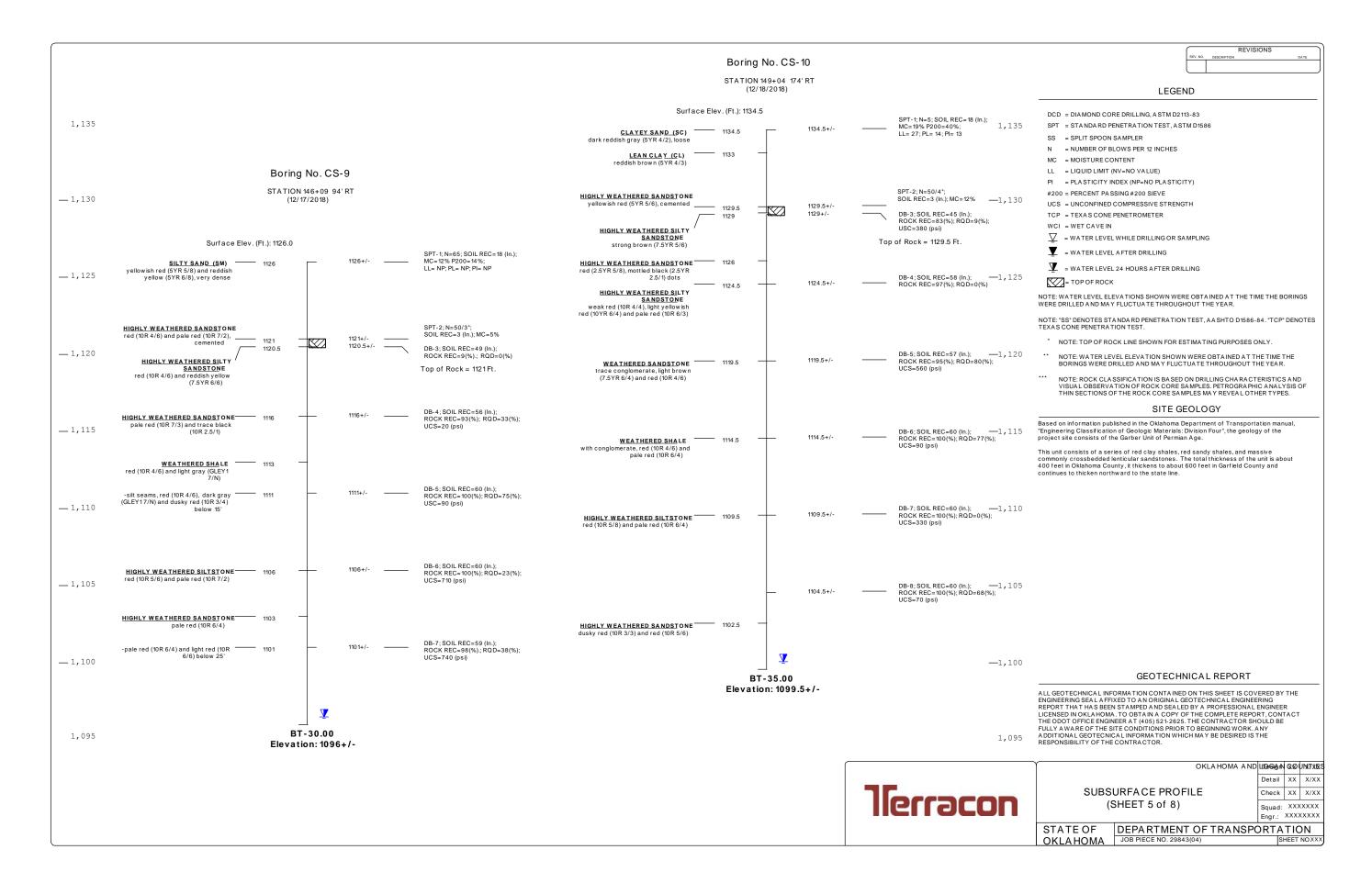
Depth: 25' to 30' - Recovery: 95% - RQD: 0%

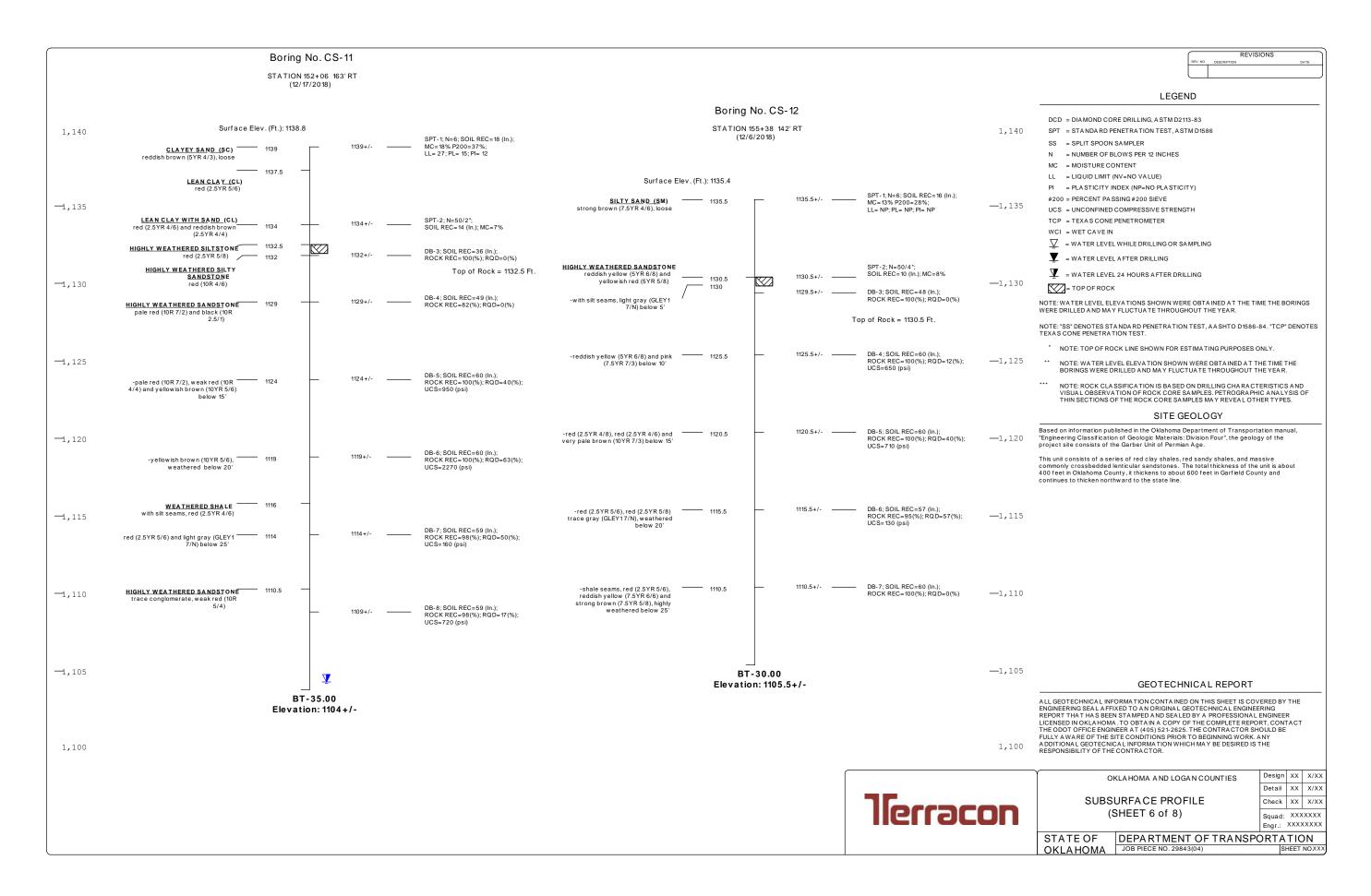
5.5

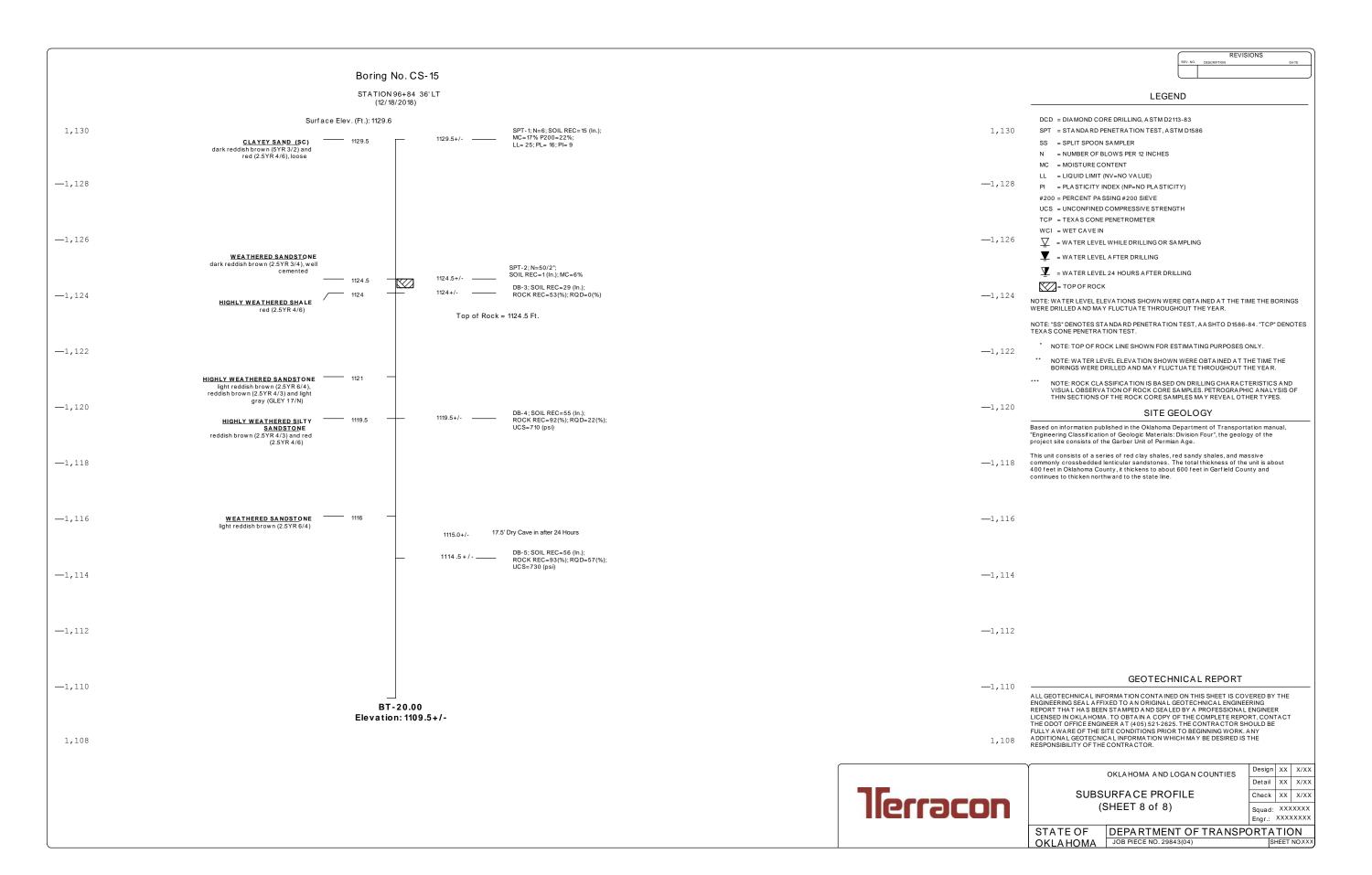



15'


Boring CS-15

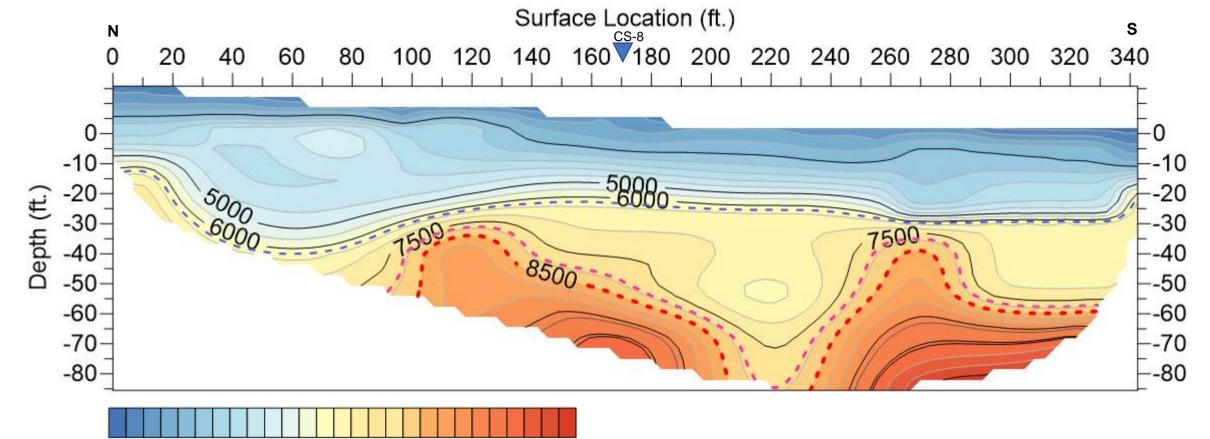

Depth: 5.5 to 10' – Recovery: 53% - RQD: 0% Depth: 10' to 15' – Recovery: 92% - RQD: 22% Depth: 15' to 20' – Recovery: 93% - RQD: 57%


												REVISIONS
		Bori	ing No. CS-1	1								REV. NO. DESCRIPTION DATE
			DN 113+81.5 114'L				Borin	ng No. CS-	2			LEGEND
			12/12/2018)					N 117+00 118' 2/11/2018)	LT			LEGEND
1,138	Si	urface Elev. (Ft.): 113	36.2					·			1,138	DCD = DIAMOND CORE DRILLING, A STM D2113-83 SPT = STANDARD PENETRATION TEST, A STM D1586 SS = SPLIT SPOON SAMPLER
 1,136	SILTY SAND (SM) weak red (10R 4/2), loose	1136		1136+/-	SPT-1; N=6; SOIL REC=18 (In.); MC=13%	Surface Ele CLAYEY SAND (SC) brownish yellow (10YR 6/8), medlum dense	, ,	6.0	1136+/-	SPT-1; N=11; SOIL REC=18 (In.); MC=16% P200=41%; LL=30; PL=15; PI=15	—1, 136	N = NUMBER OF BLOWS PER 12 INCHES MC = MOISTURE CONTENT LL = LIQUID LIMIT (NV=NO VALUE) PI = PLA STICITY INDEX (NP=NO PLA STICITY)
— 1,134	SANDY LEAN CLAY (CL) weak red (10R 4/2) and dark red (10R 3/6)	1134.5	_	1134+/-	SH-2; SOIL REC=21 (in.); MC=16% LL= 38; PL= 13; PI= 25						-1,134	#200 = PERCENT PASSING #200 SIEVE UCS = UNCONFINED COMPRESSIVE STRENGTH TCP = TEXAS CONE PENETROMETER WCI = WET CAVE IN
— 1 , 132	CLAYEY SAND (SC) red (2.5YR 5/6)	1132		1131+/-	SPT-3; N=50/6*; ————————————————————————————————————	HIGHLY WEATHERED SANDSTONE ——— red (10R 5/8) and reddish yellow (5YR 6/8)	1132		1131+/-	Top of Rock = 1132 Ft.	— 1,132	 ∑ = WATER LEVEL WHILE DRILLING OR SAMPLING ∑ = WATER LEVEL AFTER DRILLING Z = WATER LEVEL 24 HOURS AFTER DRILLING
—1, 130	HIGHLY WEATHERED SHALE WITH SANDSTONE LAYERS red (2.5YR 5/8)	1130			Top of Rock = 1130	Ft.		_	1130.5+/-	SOIL REC=6 (In.); MC=4% DB-3; SOIL REC=3 (In.); ROCK REC=5 (%); RQD=5(%)	— 1,130	= TOP OF ROCK NOTE: WATER LEVEL ELEVATIONS SHOWN WERE OBTAINED AT THE TIME THE BORINGS WERE DRILLED AND MAY FLUCTUATE THROUGHOUT THE YEAR.
1 120											 1,128	NOTE: "SS" DENOTES STANDARD PENETRATION TEST, AASHTO D1586-84. "TCP" DENOTES TEXAS CONE PENETRATION TEST. * NOTE: TOP OF ROCK LINE SHOWN FOR ESTIMATING PURPOSES ONLY.
— 1,128					SPT-4; N=50/3";						-1,120	** NOTE: WATER LEVEL ELEVATION SHOWN WERE OBTAINED AT THE TIME THE BORINGS WERE DRILLED AND MAY FLUCTUATE THROUGHOUT THE YEAR.
— 1,126	-light red (2.5YR 6/6) below 10.5'	1125.5 1125		1126+/- 1126+/-	SF1-4; N=50/3; SOIL REC=1 (In.); MC=5% DB-5; SOIL REC=49 (In.); ROCK REC=62(%); RQD=15(%); UCS=20 (psi)	-weathered, dark reddish brown (5YR 2.5/2/2) below 10.5'	1125.5	_	1125.5+/-	DB-4; SOIL REC=52 (ln.); ROCK REC=87 (%); RQD=35(%); UCS=10 (psi)	 1,126	NOTE: ROCK CLASSIFICATION IS BASED ON DRILLING CHARACTERISTICS AND VISUAL OBSERVATION OF ROCK CORE SAMPLES. PETROGRAPHIC ANALYSIS OF THIN SECTIONS OF THE ROCK CORE SAMPLES MAY REVEAL OTHER TYPES.
— 1,124	6/6) below 11'					(011/2/3/2/2/000W 10/3				003=10 (psi)	-1,124	SITE GEOLOGY Based on information published in the Oklahoma Department of Transportation manual, "Engineering Classification of Geologic Materials: Division Four", the geology of the project site consists of the Garber Unit of Permian Age.
— 1,122	-dusky red (2.5YR 3/2) and red (2.5YR 4/6) below 13.5'	1122.5			14.5' Dry Cave In After 24 hours	-weathered shale seams below 13.5'	1122.5				-1,122	This unit consists of a series of red clay shales, red sandy shales, and massive commonly crossbedded lenticular sandstones. The total thickness of the unit is about 400 feet in Oklahoma County, it thickens to about 600 feet in Garfield County and continues to thicken northward to the state line.
— 1 , 120	-with silt seams, red (2.5YR 4/6) and gray (GLEY 17/N) below 15'	1121	_	1121+/-	— DB-6; SOIL REC=58 (In.); ROCK REC=97(%); RQD=63(%); UCS=160 (psi)	HIGHLY WEATHERED SHALE red (2.5YR 4/6) and light red (2.5YR 6/8)	1120.5		1120.5+/-	DB-5; SOIL REC=60 (ln.); ROCK REC=100 (%); RQD=96(%); UCS=170 (psi)	— 1,120	
— 1,118	-reddish brown (2.5YR 4/3) and yellowish brown (10YR 5/6) below 18'	1118				-red (2.5YR 4/8) below 18.5'	1117.5				— 1,118	
— 1 , 116	-light reddish brown (5YR 6/3) and weak red (10R 5/4) below 20'	1116	_	1116+/-	DB-7; SOIL REC=59 (In.); ROCK REC=98(%); RQD=8(%); UCS=490 (psi)	-pinkish white (2.5YR 8/2) and red (2.5YR 5/8) below 20.5'	1115.5	- ₹	1115.5+/-	DB-6; SOIL REC=60 (ln.); ROCK REC=100 (%); RQD=28(%); UCS=180 (psi)	-1,116	
— 1,114											-1,114	
						HIGHLY WEATHERED SANDSTONE	1112 5	_				GEOTECHNICAL REPORT
 1,112			 BT-25.00			dusky red (2.5YR 3/2)	1112.5				—1, 112	ALL GEOTECHNICAL INFORMATION CONTAINED ON THIS SHEET IS COVERED BY THE ENGINEERING SEAL A FFIXED TO AN ORIGINAL GEOTECHNICAL ENGINEERING REPORT THAT HAS BEEN STAMPED AND SEALED BY A PROFESSIONAL ENGINEER LICENSED IN OKLAHOMA. TO OBTAIN A COPY OF THE COMPLETE REPORT, CONTACT THE ODDT OFFICE ENGINEER AT (465) 521-2625. THE CONTRACTOR SHOULD BE
1,110		Elev	ation: 1111+/-	-				— 3T-25.50 tion: 1110.5	+/-		1,110	FULLY AWARE OF THE SITE CONDITIONS PRIOR TO BEGINNING WORK. ANY ADDITIONAL GEOTECNICAL INFORMATION WHICH MAY BE DESIRED IS THE RESPONSIBILITY OF THE CONTRACTOR.
										lerrac	on.	OKLA HOMA AND LOGAN COUNTIES Design XX X/XX Detail XX X/XX Detail XX X/XX Check XX X/XX X/XX Check XX X/XX X/XX



								REV. NO. DESCRIPTION	DATE
	Boring No. CS-13			Boring No. CS-	4				
	STATION 158+29 128' RT			STATION 166+18 117' I (12/7/2018)	RT			LEGEND	
1,135	SILTY SAND (SM)	SPT-1; N=3; SOIL REC=18 (In.); MC=11% P200=25%; LL= NP; PL= NP; PI= NP	Surface Elev <u>CLAYEY SAND (SC)</u> dark reddish brown (2.5YR 3/3), loose	r. (Ft.): 1134.8	1135+/-	SPT-1; N=7; SOIL REC=18 (In.); MC=14 % P200=37%; LL= 27; PL= 16; PI= 11	1,135	DCD = DIAMOND CORE DRILLING, A STM D2113-83 SPT = STANDARD PENETRATION TEST, A STM D1586 SS = SPLIT SPOON SAMPLER N = NUMBER OF BLOWS PER 12 INCHES MC = MOISTURE CONTENT LL = LIQUID LIMIT (NV=NO VALUE)	
— 1,130	yellow (10YR 8/6) and pale red (2.5YR 7/2) 1129.5 1129.5 1128.5+/-	SPT-2; N=50/3*; SOIL REC=9 (In.); MC=5% DB-3; SOIL REC=48 (In.); ROCK REC=100(%); RQD=0(%); UCS=560 (ps)	SANDY LEAN CLAY (CL) red (2.5YR 5/8), very stiff	1130	1130+/-	SPT-2; N=22; SOIL REC=18 (In.); MC=9% P200=58%; LL= 29; PL= 14; PI= 15	—1, 130	PI = PLA STICITY INDEX (NP=NO PLA STICITY) #200 = PERCENT PA SSING #200 SIEVE UCS = UNCONFINED COMPRESSIVE STRENGTH TCP = TEXAS CONE PENETROMETER WCI = WET CAVE IN W = WATER LEVEL WHILE DRILLING OR SAMPLING WATER LEVEL A FTER DRILLING	
— 1,125	-weak red (10R 5/4), reddish brown 1124.5 1124.5+/- (5VB 5/4) and ducky red (10R 3/3)	Top of Rock = 1129.5 Ft. DB-4; SOIL REC=59 (In.); ROCK REC=98(%); RQD=50(%); UCS=580 (ps)	SHALEY LEAN CLAY (CL) red (2.5YR 5/8), hard	1125	1125+/-	SPT-3; N=33; SOIL REC=14 (In.); MC=14 %	— 1,125	▼ = WATER LEVEL 24 HOURS AFTER DRILLING TOP OF ROCK NOTE: WATER LEVEL ELEVATIONS SHOWN WERE OBTAINED AT THE TIME THE BOWERE DRILLED AND MAY FLUCTUATE THROUGHOUT THE YEAR. NOTE: "SS" DENOTES STANDARD PENETRATION TEST, AASHTO D1586-84. "TCP" (TEXAS CONE PENETRATION TEST. * NOTE: TOP OF ROCK LINE SHOWN FOR ESTIMATING PURPOSES ONLY.	
— 1,120	with condomerate scame red (40P	DB-5; SOIL REC=57 (In.); ROCK REC=95(%); RQD=72(%); UCS=70 (psi)	-red (2.5YR 4/6) below 15'	1120 —	1120+/-	SPT-4; N=45; SOIL REC=14 (In.); MC=11% P200=92%; LL= 43; PL= 20; PI= 23	— 1,120	** NOTE: WATER LEVEL ELEVATION SHOWN WERE OBTAINED AT THE TIME TI BORINGS WERE DRILLED AND MAY FLUCTUATE THROUGHOUT THE YEAR. *** NOTE: ROCK CLASSIFICATION IS BASED ON DRILLING CHARACTERISTICS VISUAL OBSERVATION OF ROCK CORE SAMPLES. PETROGRAPHIC ANALY: THIN SECTIONS OF THE ROCK CORE SAMPLES MAY REVEAL OTHER TYPES SITE GEOLOGY Based on information published in the Oklahoma Department of Transportation manuals.	AND SIS OF S.
— 1,115	-Ted (10x 476), pale brown (101 x 675) 1114.5	DB-6; SOIL REC=55 (ln.); ROCK REC=92(%); RQD=88(%); UCS=70 (psi)		_	1115+/-	SPT-5; N=30; SOIL REC=17 (In.); MC=12%	— 1,115	"Engineering Classification of Geologic Materials: Division Four", the geology of the project site consists of the Garber Unit of Permian Age. This unit consists of a series of red clay shales, red sandy shales, and massive commonly crossbedded lenticular sandstones. The total thickness of the unit is abo 400 feet in Oklahoma County, it thickens to about 600 feet in Garfield County and continues to thicken northward to the state line.	
— 1,110	-nighty weathered below 25 1109.5	DB-7; SOIL REC=57 (ln.); ROCK REC=95(%); RQD=0(%); UCS=130 (psi)	HIGHLY WEATHERED SANDSTONE dark red (2.5YR 3/6), well cemented	BT-26.50 Elevation: 1108.5		SPT-6; N=50/1*; SOIL REC=1 (In.); MC=3% op of Rock = 1110 Ft.	-1,110		
— 1,105	BT-30.00						— 1,105		
	Elevation: 1104.5+/-							GEOTECHNICAL REPORT	
1,100							1,100	ALL GEOTECHNICAL INFORMATION CONTAINED ON THIS SHEET IS COVERED BY TENGINEERING SEAL A FFIXED TO AN ORIGINAL GEOTECHNICAL ENGINEERING REPORT THAT HAS BEEN STAMPED AND SEALED BY A PROFESSIONAL ENGINEER LICENSED IN OKLAHOMA. TO OBTAIN A COPY OF THE COMPLETE REPORT, CONT. THE ODOT OFFICE ENGINEER AT (405) 521-2625. THE CONTRACTOR SHOULD BE FULLY A WARE OF THE SITE CONDITIONS PRIOR TO BEGINNING WORK. ANY A DDITIONAL GEOTECNICAL INFORMATION WHICH MAY BE DESIRED IS THE RESPONSIBILITY OF THE CONTRACTOR.	.
						Terraci	on	SUBSURFACE PROFILE (SHEET 7 of 8) STATE OF DEPARTMENT OF TRANSPORTATION DETAILS DETAI	XX X/XX XX X/XX XX X/XX XXXXXXX XXXXXXX XXXXXXX TION EET NOXXX

APPENDIX B FIELD TESTING RESULTS


	_
Project Manager: DV	Project No. 031852
DV.	4
Drawn by:	Scale:
JW	N.T.S.
Checked by:	File Name:
RM	K LO
Approved by:	Date:
NK'	T JAN 201

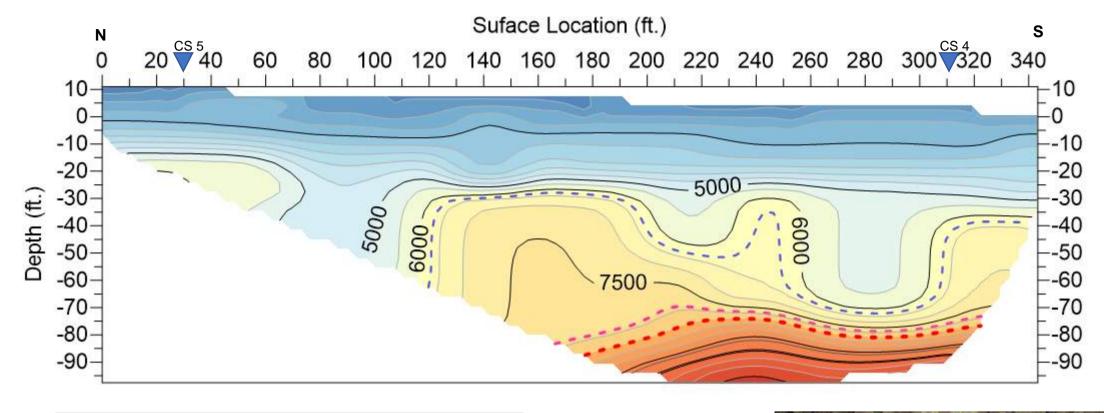
Location Diagram Seismic Lines I-35 & Waterloo Road Edmond, Oklahoma B1

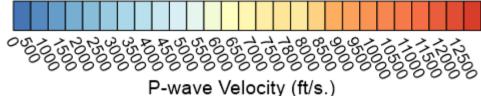
Exhibit

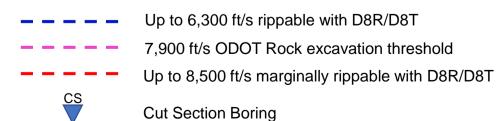
LINE 1 P-WAVE VELOCITY (Vp) PROFILE

P-wave Velocity (ft/s.)

Up to 6,300 ft/s rippable with D8R/D8T
7,900 ft/s ODOT Rock excavation threshold
Up to 8,500 ft/s marginally rippable with D8R/D8T
CS
Cut Section Boring

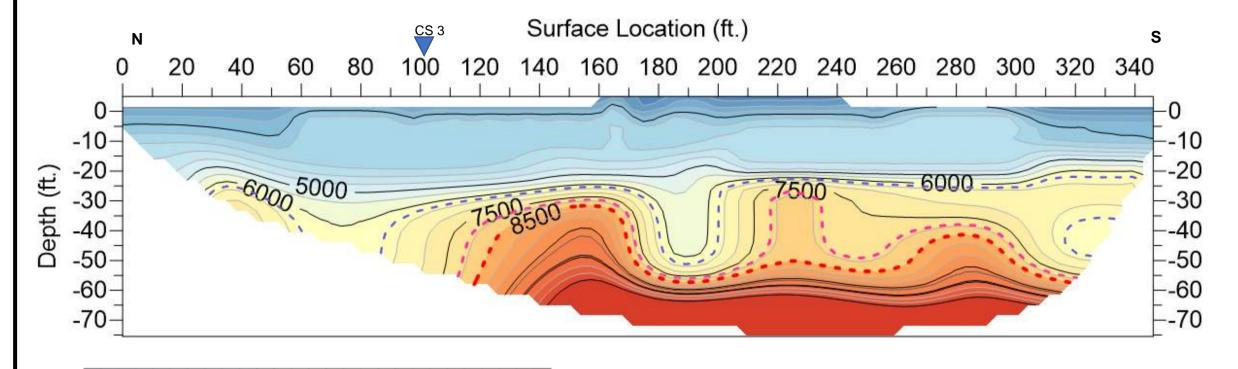

Project Manager:	Project No.
DVS	03185253
Drawn by: JWA	Scale:
Checked by:	File Name:
RMK	LOC
Approved by:	Date:
NKT	IAN 2019

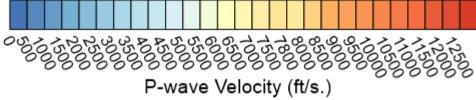



SEISMIC RESULTS
Seismic Lines
I-35 & Waterloo Road
Edmond, Oklahoma

Exhibit

LINE 2 P-WAVE VELOCITY (Vp) PROFILE


Project Manager: DVS	Project No. 03185253	75
Drawn by: JWA	Scale:	1161
Checked by: RMK	File Name: LOC	Consulting
Approved by: NKT	Date: JAN 2019	4701 N. STILES AVE O PH. (405) 525-0453

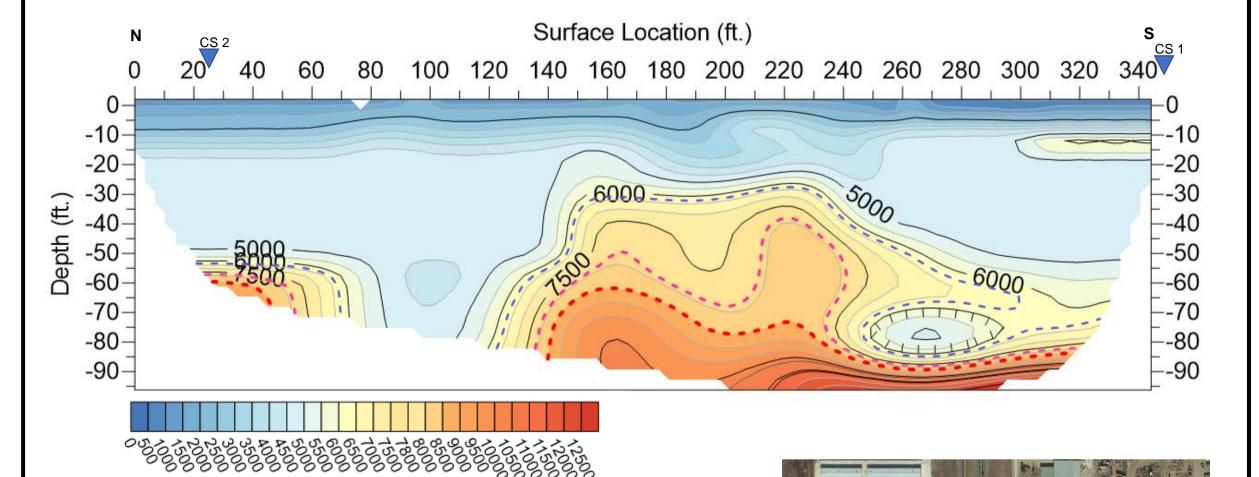

rracon

SEISMIC RESULTS Seismic Lines I-35 & Waterloo Road Edmond, Oklahoma

Exhibit

LINE 3 P-WAVE VELOCITY (Vp) PROFILE

Up to 6,300 ft/s rippable with D8R/D8T
7,900 ft/s ODOT Rock excavation threshold
Up to 8,500 ft/s marginally rippable with D8R/D8T
Cs
Cut Section Boring


Project Manager: DVS	Project No. 0318525	
Drawn by: JWA	Scale:	
Checked by: RMK	File Name: LOC	
Approved by:	Date:	

SEISMIC RESULTS
Seismic Lines
I-35 & Waterloo Road
Edmond, Oklahoma

Exhibit

LINE 4 P-WAVE VELOCITY (Vp) PROFILE

Up to 6,300 ft/s rippable with D8R/D8T

7,900 ft/s ODOT Rock excavation threshold

Up to 8,500 ft/s marginally rippable with D8R/D8T

CS

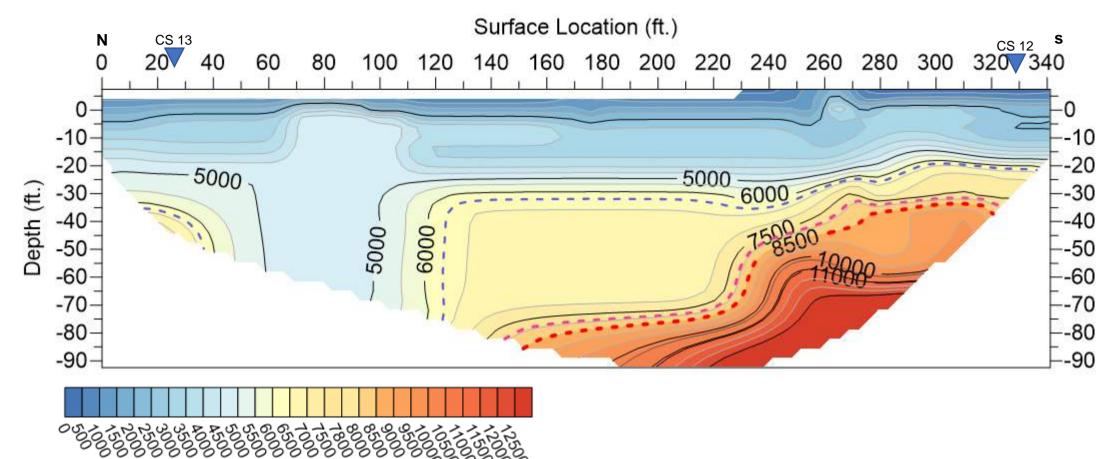
Cut Section Boring

P-wave Velocity (ft/s.)

Project Manager: DVS	Project No. 03185253	75
Drawn by: JWA	Scale:	IIC
Checked by: RMK	File Name:	Consulti
Approved by:	Date:	4701 N. STILES AVE PH. (405) 525-0453

Consulting Engineers & Scientists

4701N. STIES AM: ORAHOMACITY, ORAHOMA78145


PH. (405) 525-0453 FAX. (405) 527-0549

SEISMIC RESULTS
Seismic Lines
I-35 & Waterloo Road
Edmond, Oklahoma

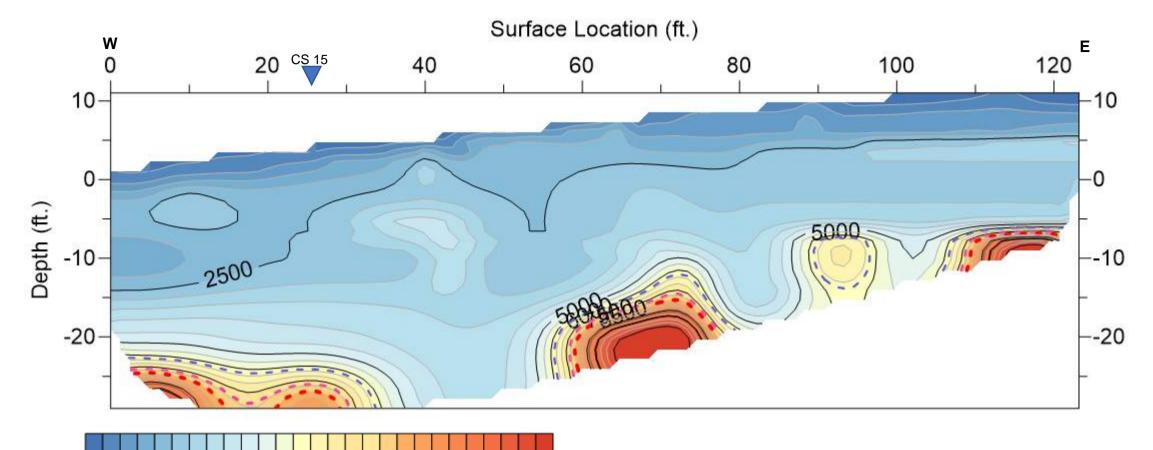
Exhibit

B5

LINE 5 P-WAVE VELOCITY (Vp) PROFILE

P-wave Velocity (ft/s.)

Up to 6,300 ft/s rippable with D8R/D8T
7,900 ft/s ODOT Rock excavation threshold
Up to 8,500 ft/s marginally rippable with D8R/D8T
CS
Cut Section Boring


35253	75	
s.'.	Consulti	ng Engineers & Scient
LOC	4701 N. STILES AVE	OKLAHOMA CITY, OKLAHOMA 74145
	PH. (405) 525-0453	FAX. (405) 557-0549

SEISMIC RESULTS
Seismic Lines
I-35 & Waterloo Road
Edmond, Oklahoma

Exhibit

Ν

LINE 6 P-WAVE VELOCITY (Vp) PROFILE

P-wave Velocity (ft/s.)

Up to 6,300 ft/s rippable with D8R/D8T
7,900 ft/s ODOT Rock excavation threshold
Up to 8,500 ft/s marginally rippable with D8R/D8T
CS
Cut Section Boring

	SEISMIC RESULTS
Consulting Engineers & Scientists	Seismic Lines
701 N. STILES AVE OKLAHOMA CITY, OKLAHOMA 74145	I-35 & Waterloo Road
H. (405) 525-0453 FAX. (405) 557-0549	Edmond, Oklahoma

Z

Exhibit

B7

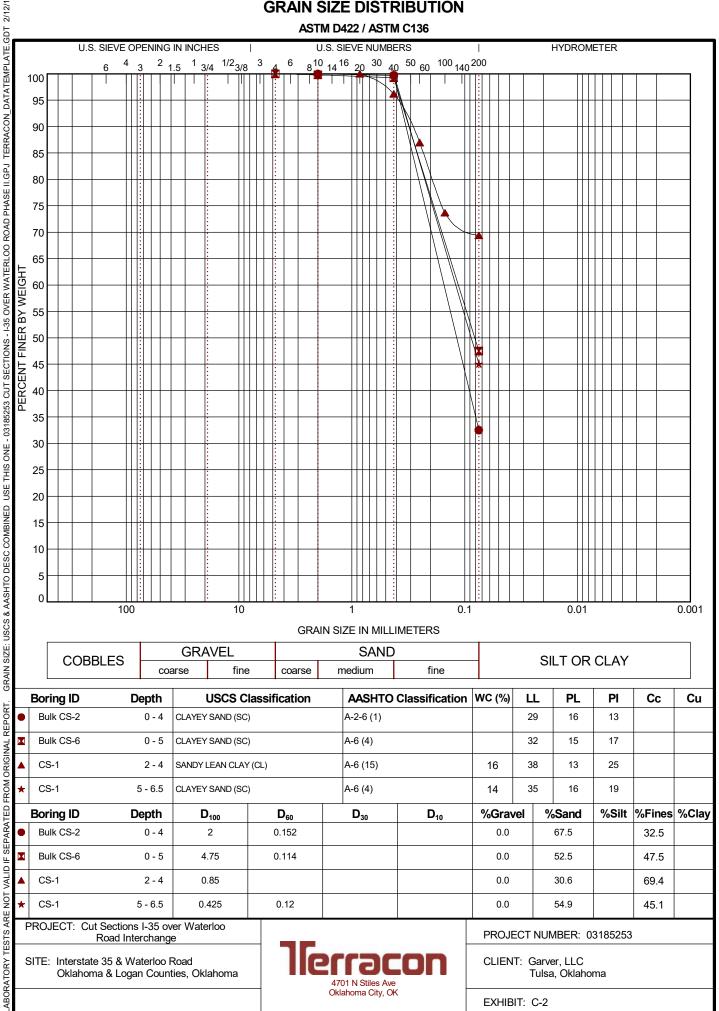
APPENDIX C LABORATORY TESTING

Geotechnical Engineering Report

Cut Sections • I-35 over Waterloo Road Interchange • Oklahoma and Logan Counties, Oklahoma • March 22, 2019 • Terracon Project No. 03185253

Laboratory Testing

Samples retrieved during the field exploration from the cut sections were taken to the laboratory for further observation by the project geotechnical engineer and were classified in accordance with the Unified Soil Classification System (USCS) described in Appendix E.


Laboratory tests were conducted on selected soil and rock samples in general accordance with the applicable AASHTO, local or other accepted standards. The field descriptions were modified as necessary based on visual observation and laboratory test results. The laboratory test results are presented on the boring logs next to the respective samples.

The following laboratory tests were performed on selected overburden soil and rock samples obtained from the site:

- In-situ Water Content
- Sieve Analysis
- Atterberg Limits
- Rock Core Unconfined Compressive Strength
- In-Situ Dry Density
- Moisture Density Relationship
- Direct Shear Test
- Consolidated Undrained Triaxial Compression Test

Procedural standards noted above are for reference to methodology in general. In some cases, variations to methods are applied as a result of local practice or professional judgment.

ASTM D422 / ASTM C136

ASTM D422 / ASTM C136

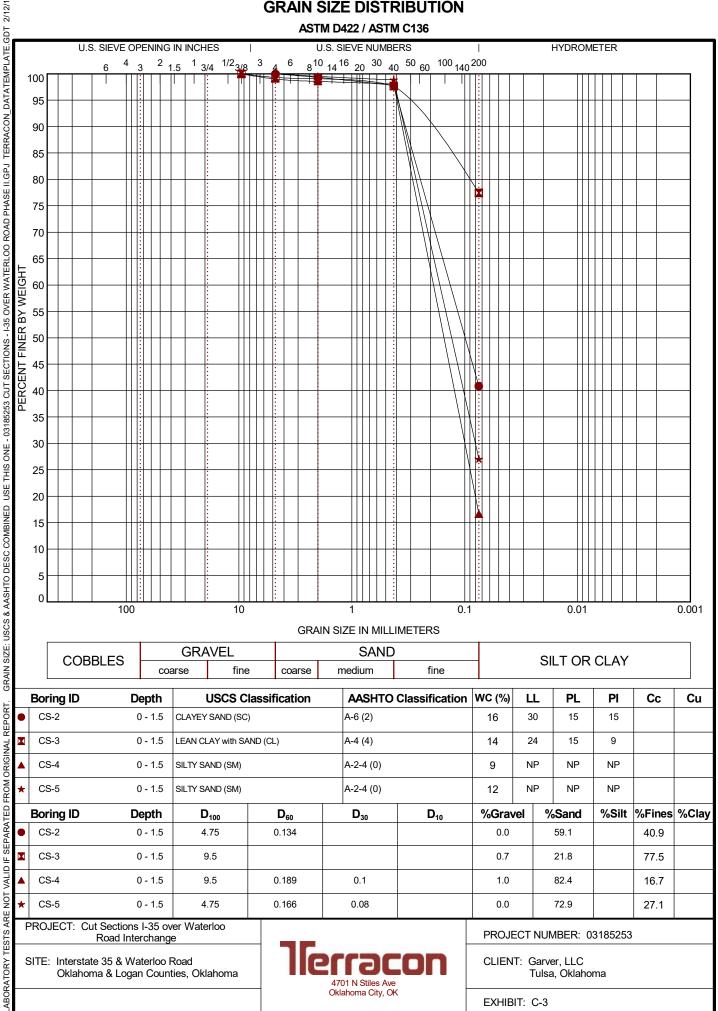
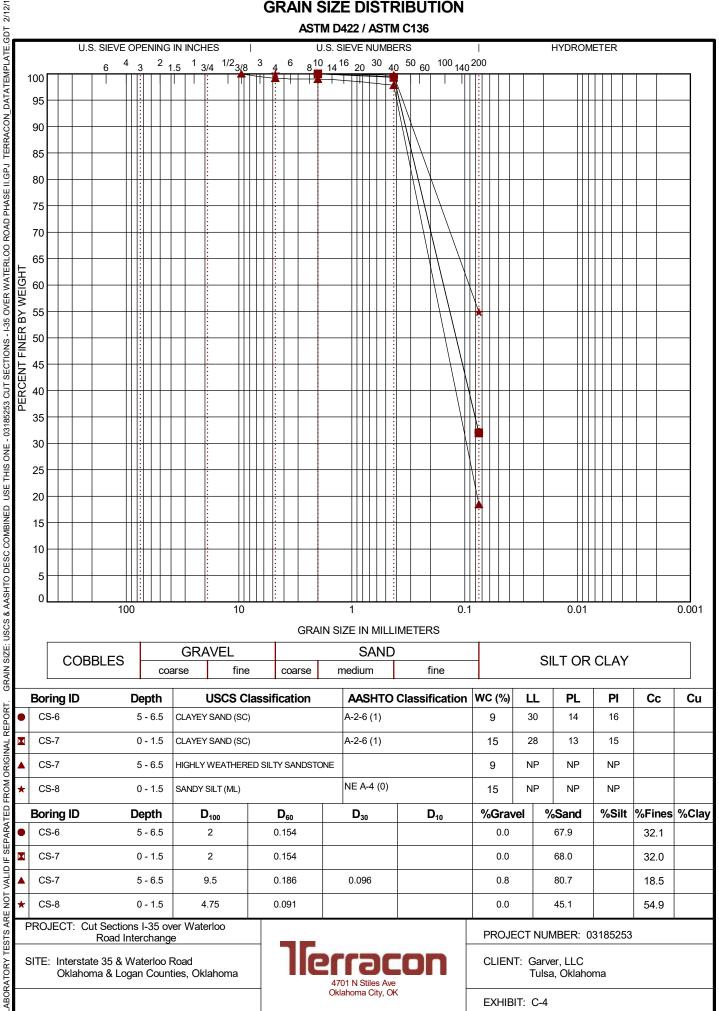
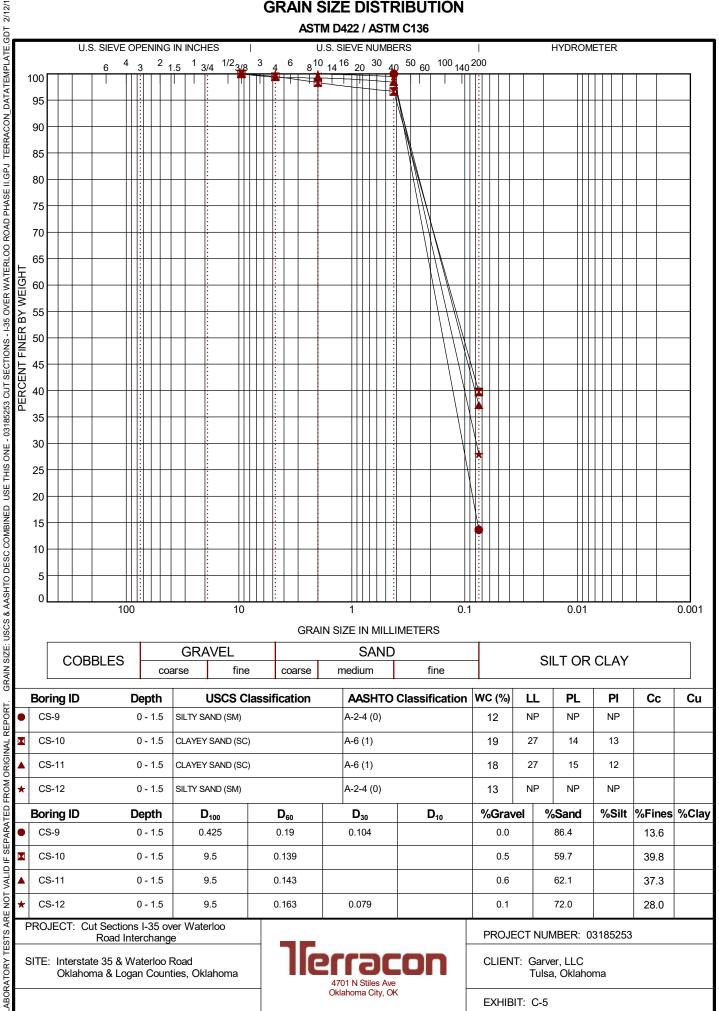
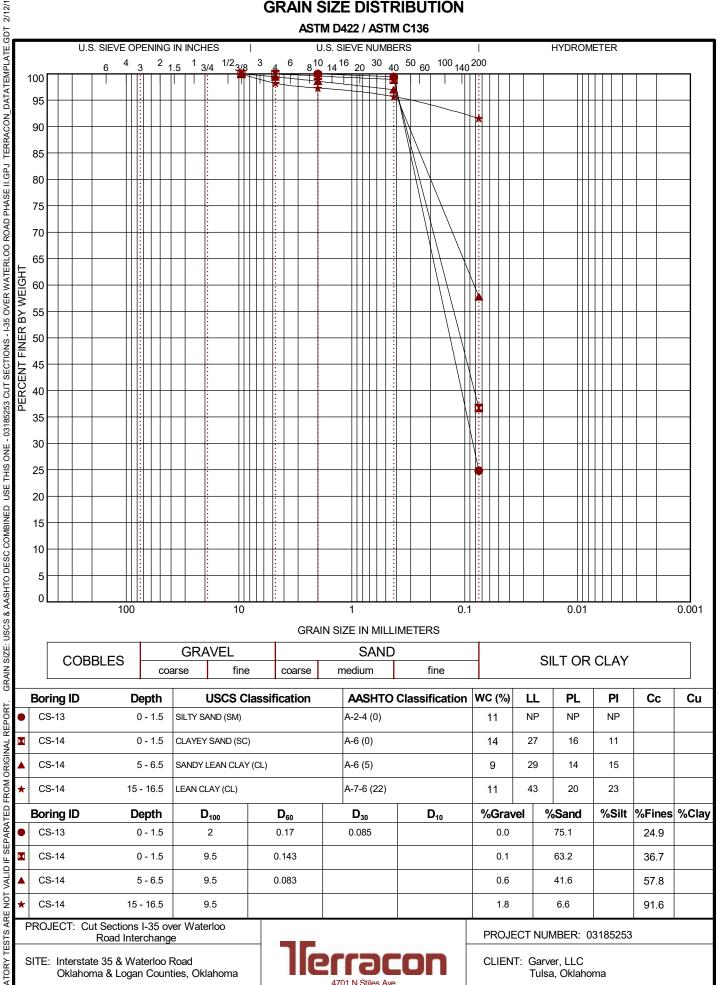
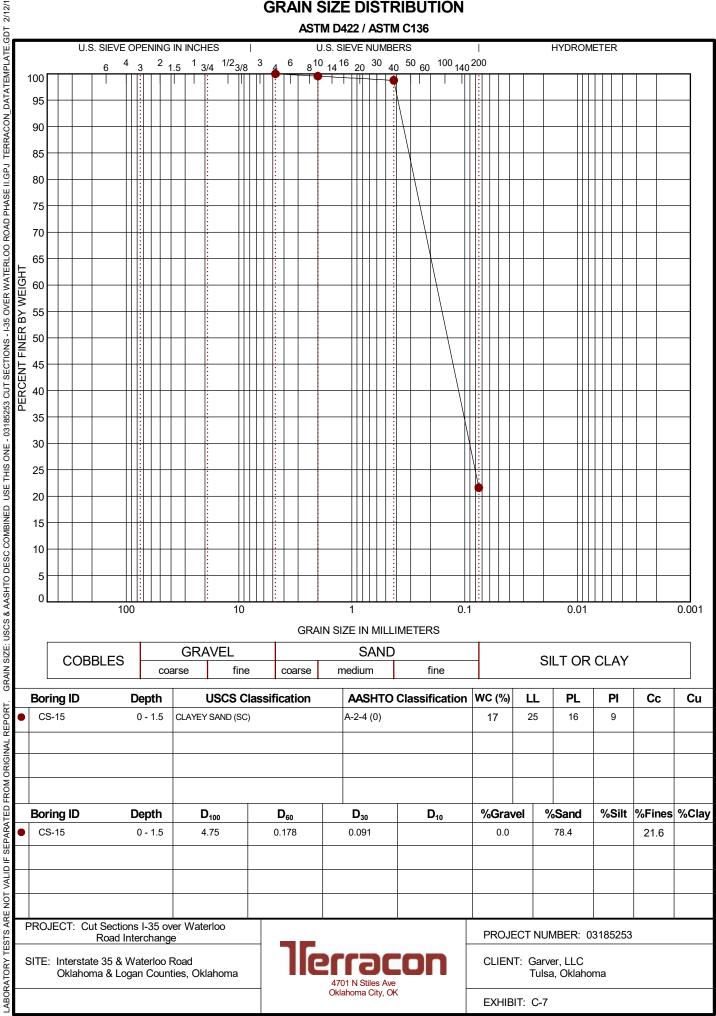




EXHIBIT: C-3


ASTM D422 / ASTM C136

ASTM D422 / ASTM C136


ASTM D422 / ASTM C136

Oklahoma City, OK

EXHIBIT: C-6

ASTM D422 / ASTM C136

01/09/19

Exhibit C-8

Laboratory Compaction Characteristics of Soil

4701 North Stiles Ave. Oklahoma City, OK 73105 (405) 525 0453

Client Name:	Garver, LLC	Project No.:
Project Name:	Cut Sections	

Lesstien: LOF ever Metarles De

Location: I-35 over Waterloo Road Interchange

Oklahoma and Logan Counties, Oklahoma

Source Material: Bulk CS-1 (2.0 to 4.0")

Sample Description: Sandy Lean Clay, Weak Red (10R 4/2)

and Dark Red (10R 3/6)

Material Designation: Lab 3 Sample date: 12/12/18

Test Method: Method A

Test Procedure: ASTM D-698
Sample Preparation: Dry

Rammer: X Mechanical

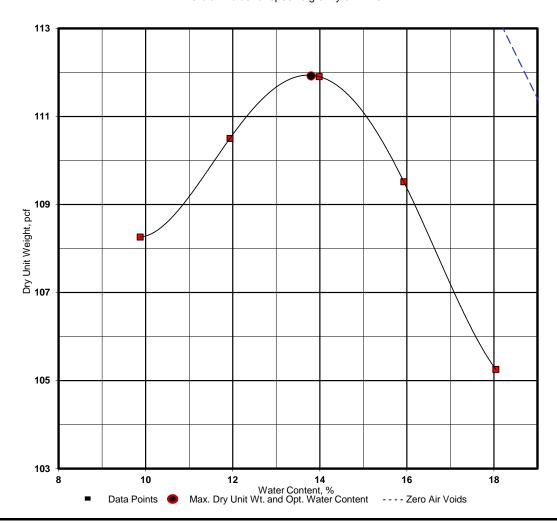
_ _ _ _

Maximum Dry Unit Wt.: 111.9 pcf
Optimum Water Content: 13.8 %

TEST RESULTS

03185253 Date:

Liquid Limit: 38 Plastic Limit: 13


Plasticity Index: 25
% passing # 200 sieve: 69

AASHTO Class. A-6(15) USCS: CL

Reviewed by: DCVS

Zero air voids for specific gravity of 2.70

Manual

01/09/19

Exhibit C-9

Laboratory Compaction Characteristics of Soil

4701 North Stiles Ave. Oklahoma City, OK 73105 (405) 525 0453

Client Name: Garver, LLC Project No.: 03185253 Date:

Project Name: Cut Sections

Location: I-35 over Waterloo Road Interchange

Oklahoma and Logan Counties, Oklahoma

Source Material: Bulk-CS-2 (0.0 to 4.0')

Sample Description: Clayey Sand, Brownish Yellow (10YR 6/8)

Material Designation: Lab 4 Sample date: 12/11/18

Test Method: Method A

Test Procedure: ASTM D-698

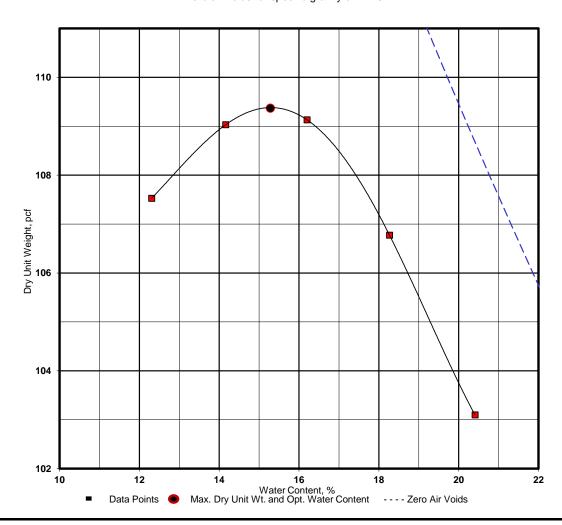
Sample Preparation: Dry

Rammer: X Mechanical Manual

TEST RESULTS

Maximum Dry Unit Wt.: 109.4 pcf
Optimum Water Content: 15.3 %

Liquid Limit: 29 Plastic Limit: 16


Plasticity Index: 13

% passing # 200 sieve: <u>33</u>

AASHTO Class. A-2-6(1) USCS: SC

Reviewed by: DCVS

Zero air voids for specific gravity of 2.70

01/08/19

Laboratory Compaction Characteristics of Soil

4701 North Stiles Ave. Oklahoma City, OK 73105 (405) 525 0453

Client Name: Garver, LLC Project No.:

Project Name: Cut Sections

Location: I-35 over Waterloo Road Interchange

Oklahoma and Logan Counties, Oklahoma

Source Material: Bulk CS-6 (0.0 to 5.0')

Sample Description: Clayey Sand, Dark Brown (7.5YR 3/2) and

Dusky Red (10R 3/4)

Material Designation: Lab 855 Sample date: 12/10/18

Test Method: Method A

Test Procedure: ASTM D-698

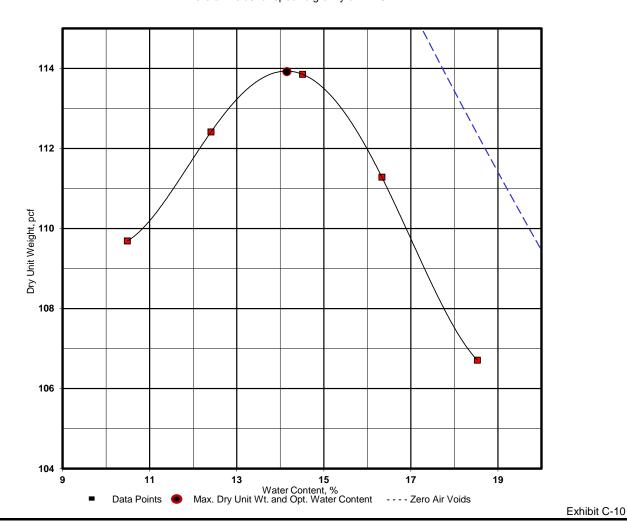
Sample Preparation: Dry

Rammer: X Mechanical Manual

TEST RESULTS

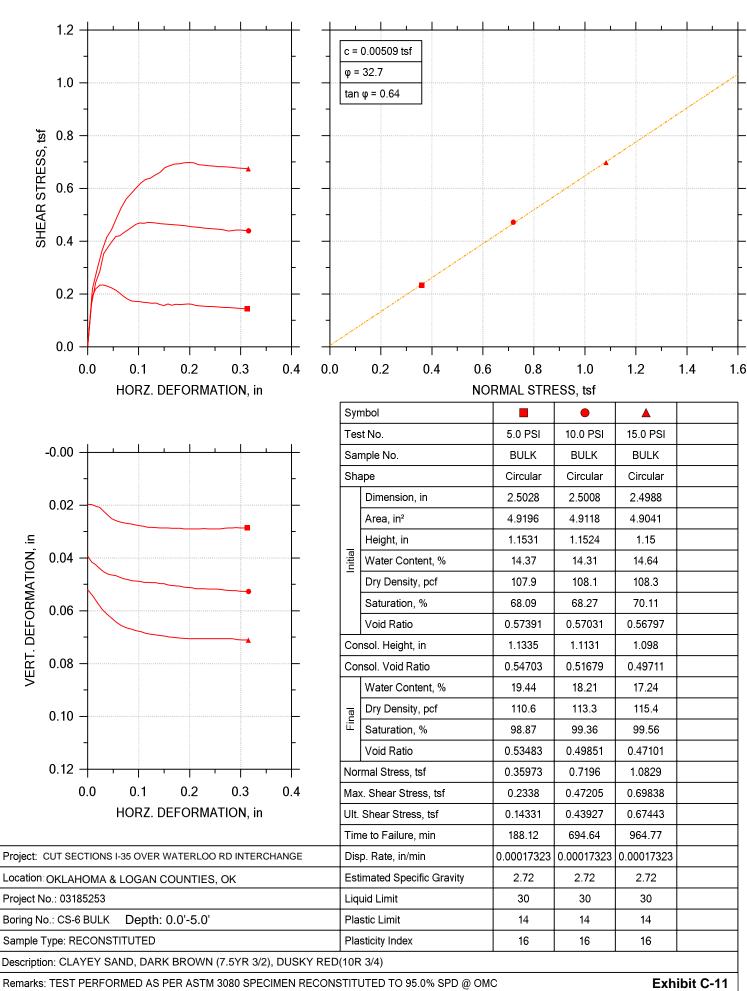
03185253 Date:

Maximum Dry Unit Wt.: 113.9 pcf
Optimum Water Content: 14.2 %

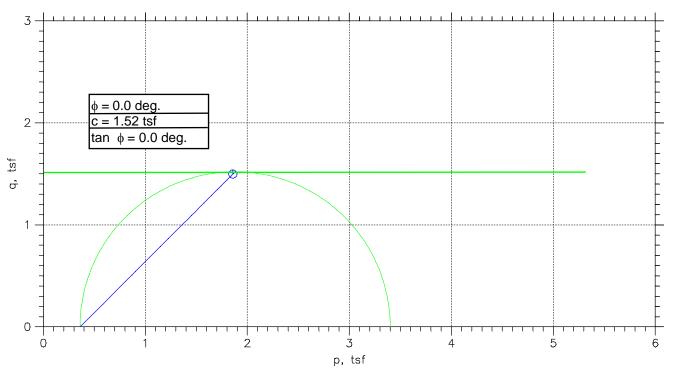

Liquid Limit: 32 Plastic Limit: 15

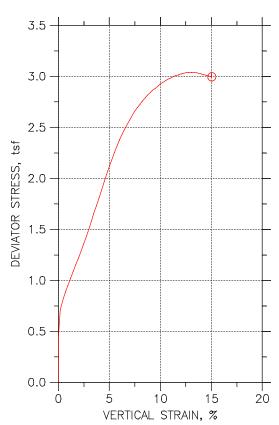
Plasticity Index: 17
% passing # 200 sieve:

AASHTO Class. A-6(4) USCS: SC

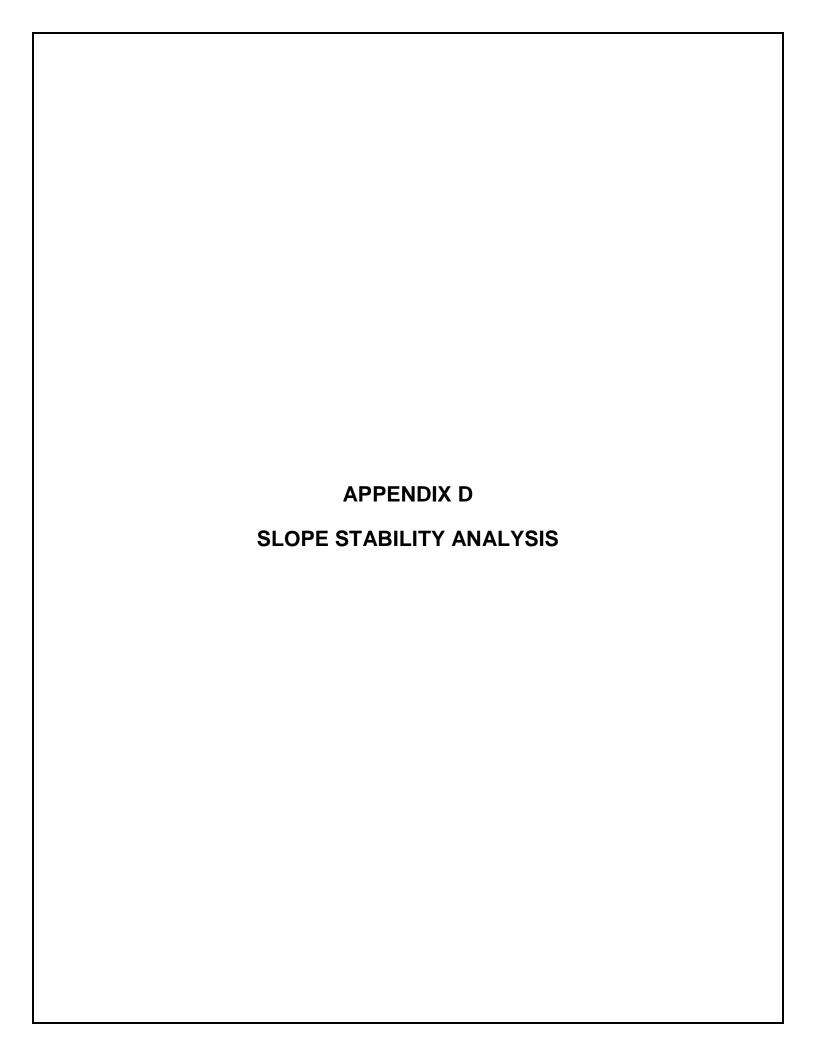

Reviewed by: DCVS

Zero air voids for specific gravity of 2.70


DIRECT SHEAR TEST OF SOILS UNDER CONSOLIDATED DRAINED CONDITIONS ASTM D3080



UNCONSOLIDATED-UNDRAINED TRIAXIAL COMPRESSION TEST ASTM D2850


Symbol		Ф		
Test No.		5.0 PSI		
	Diameter, in	2.822		
	Height, in	6.1264		
Initial	Water Content, %	16.48		
Ē	Dry Density, pcf	110.29		
	Saturation, %	83.09		
	Void Ratio	0.53962		
	Water Content, %	16.48		
Shear	Dry Density, pcf	110.29		
	Saturation, %	83.09		
Before	Void Ratio	0.53962		
В	Back Press., tsf			
Minor Prin. Stress, tsf		0.36		
Мо	x. Dev. Stress, tsf	3.0404		
Time to Failure, min		12.751		
Strain Rate, %/min		1		
B-Value				
Estimated Specific Gravit		y 2.72		
Lic	uid Limit	38		
Plastic Limit		13		
Plo	sticity Index	25		
Fa	ilure Sketch	ACTION .		-

Project: CUT SECTIONS I-35 OV	/ER WATERLOO RD INTERCHANGE
Location: OKLAHOMA & LOC	GAN COUNTIES, OK
Project No.: 03185253	Depth: 2.0'-4.0'
Boring No.: CS-1 S-2	
Sample Type: 3" ST	
D . I. CANDVIEANC	CLAV MENT DED (40D 4/0) AND DAD

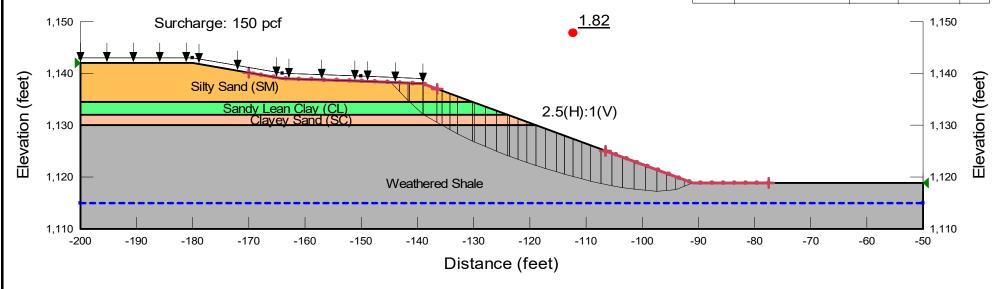
Description: SANDY LEAN CLAY, WEAK RED (10R 4/2) AND DARK RED (10R 3/6)

Remarks: FAILURE CRITERIA = MAXIMUM DEVIATOR STRESS TEST PERFORMED AS PER ASTM D2850.

Exhibit C-12

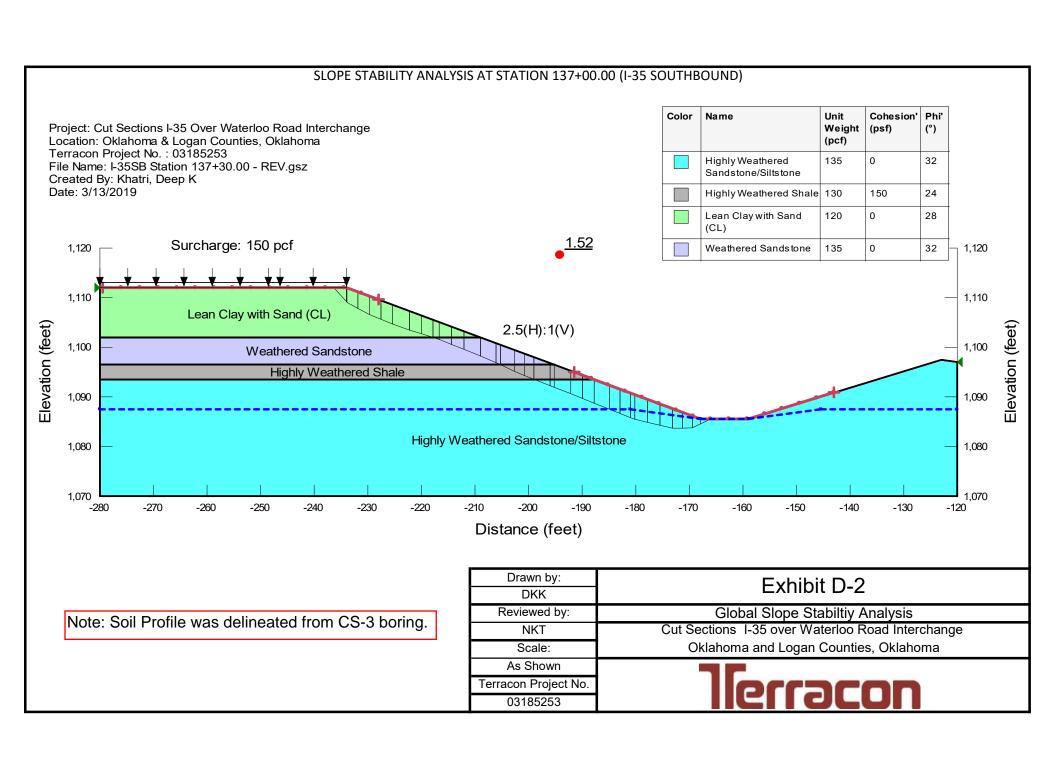
SLOPE STABILITY ANALYSIS AT STATION 116+00.00 (I-35 SOUTHBOUND)

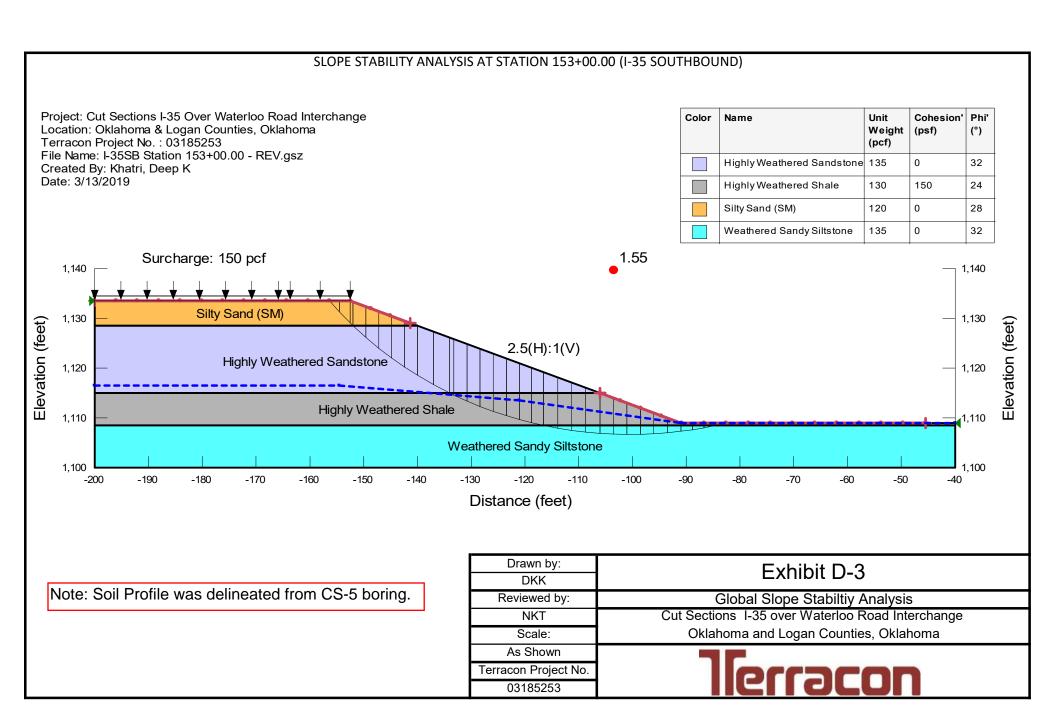
Project: Cut Sections I-35 Over Waterloo Road Interchange Location: Oklahoma & Logan Counties, Oklahoma

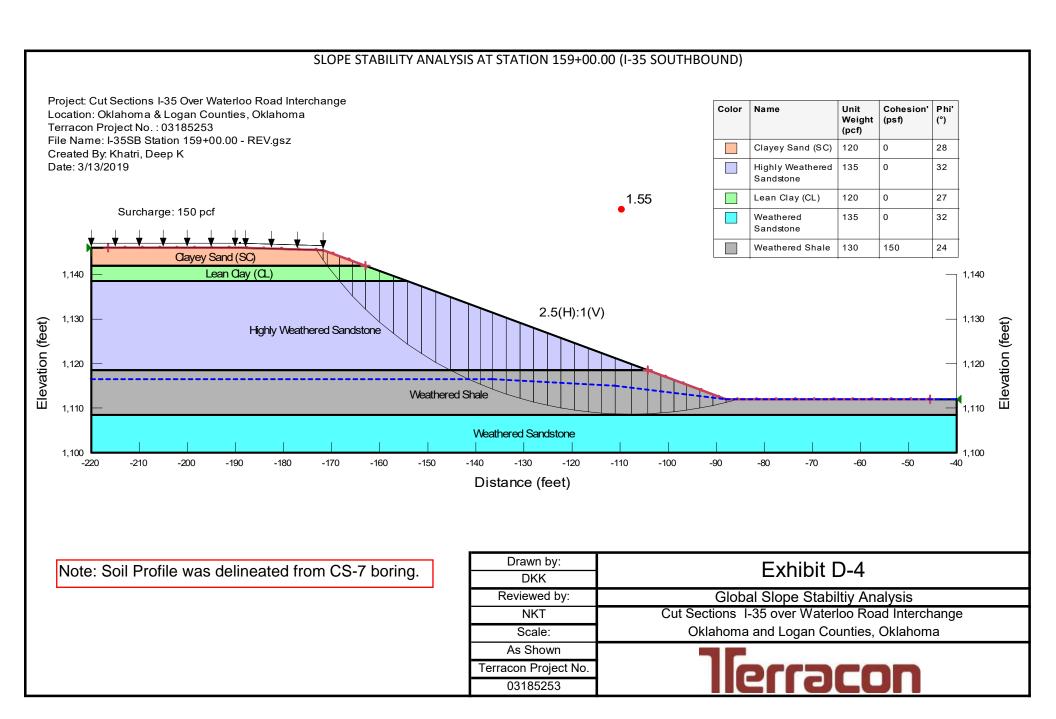

Terracon Project No.: 03185253

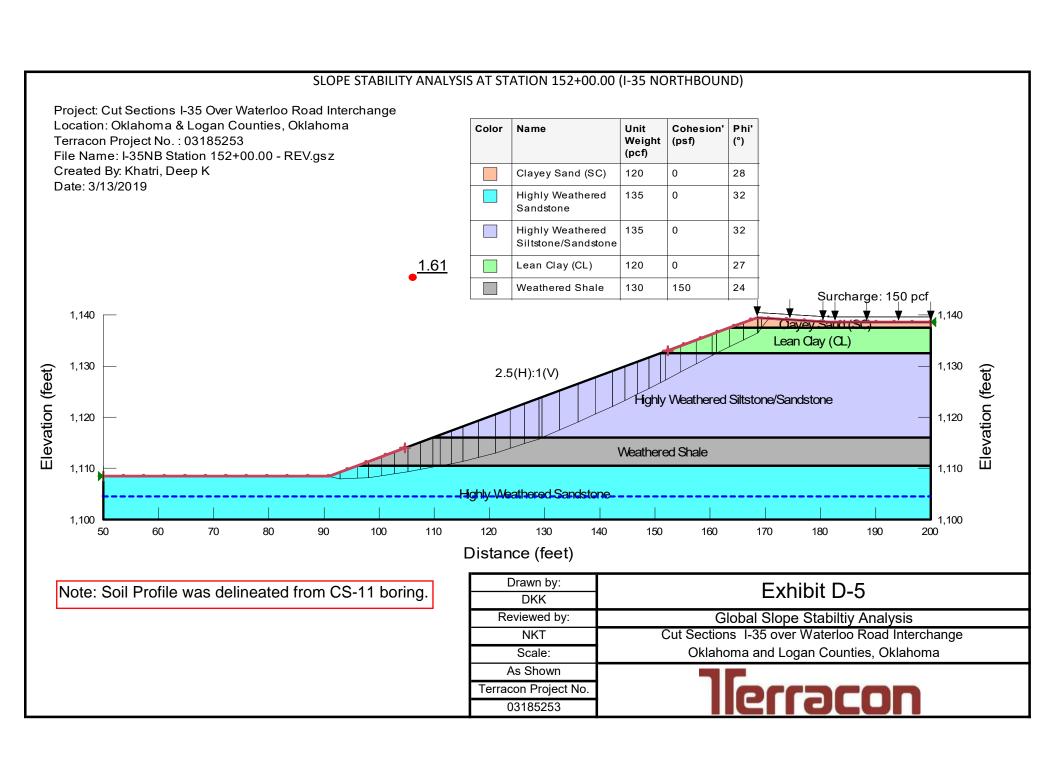
File Name: I-35SB Station 116+00.00 - REV.gsz

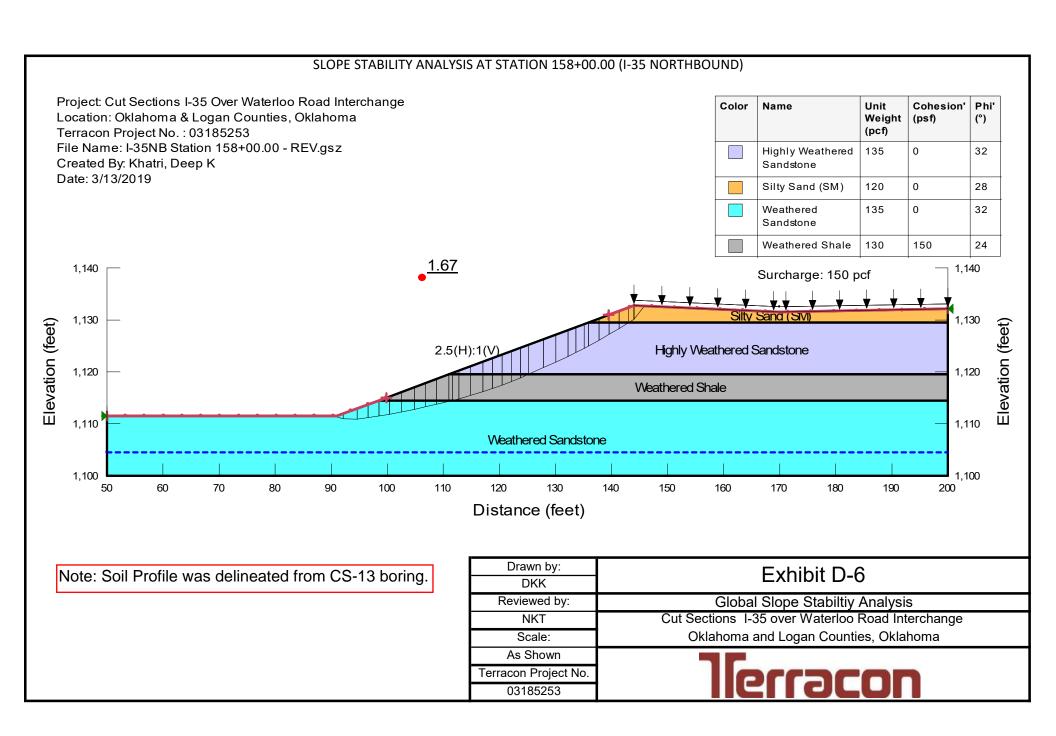
Created By: Khatri, Deep K

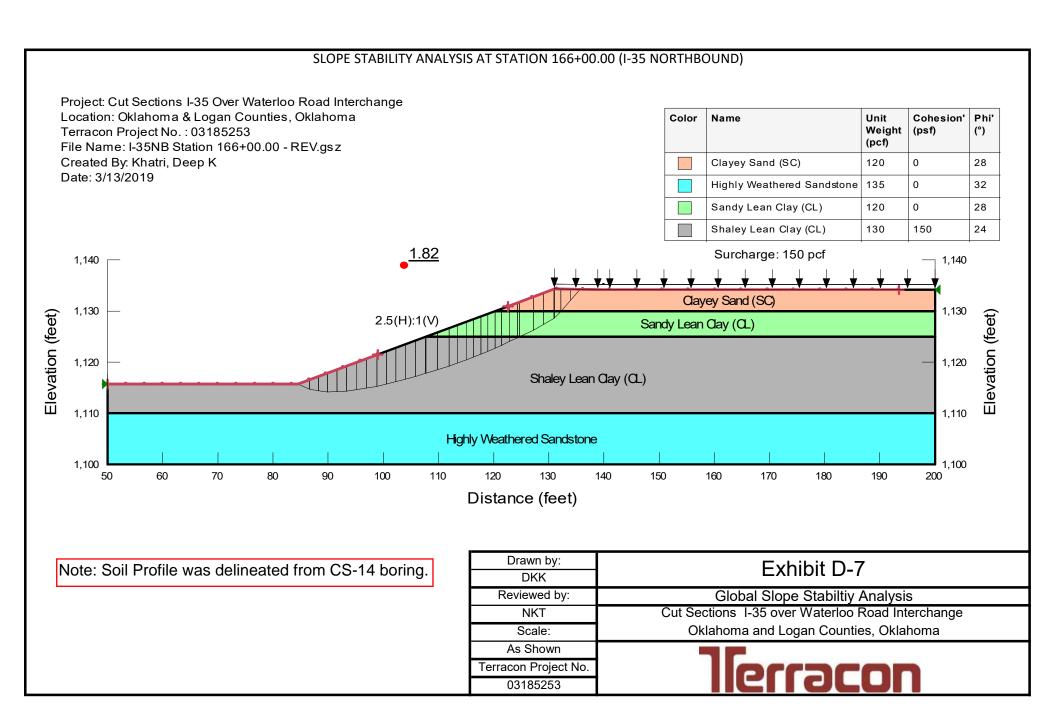

Date: 3/12/2019


Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Clayey Sand (SC)	120	0	28
	Sandy Lean Clay (CL)	120	0	28
	Silty Sand (SM)	120	0	28
	Weathered Shale	130	150	24




Note: Soil Profile was delineated from CS-1 boring.

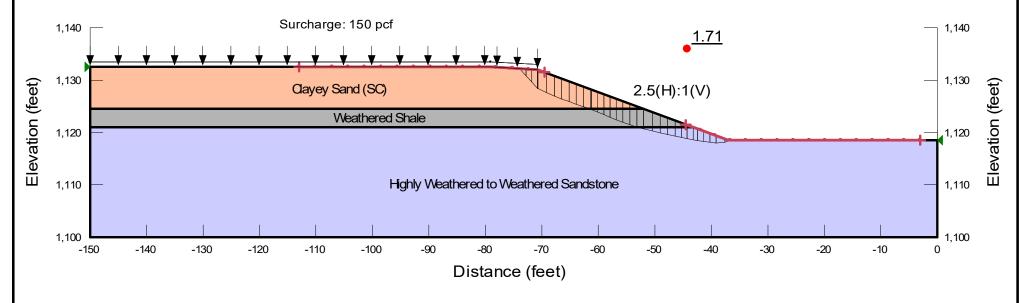

Drawn by:	Exhibit D-1
DKK	
Reviewed by:	Global Slope Stabiltiy Analysis
NKT	Cut Sections I-35 over Waterloo Road Interchange
Scale:	Oklahoma and Logan Counties, Oklahoma
As Shown	
Terracon Project No.	lleccacon
03185253	IICHOLUH



SLOPE STABILITY ANALYSIS AT STATION 97+00.00 (NE 248TH STREET)

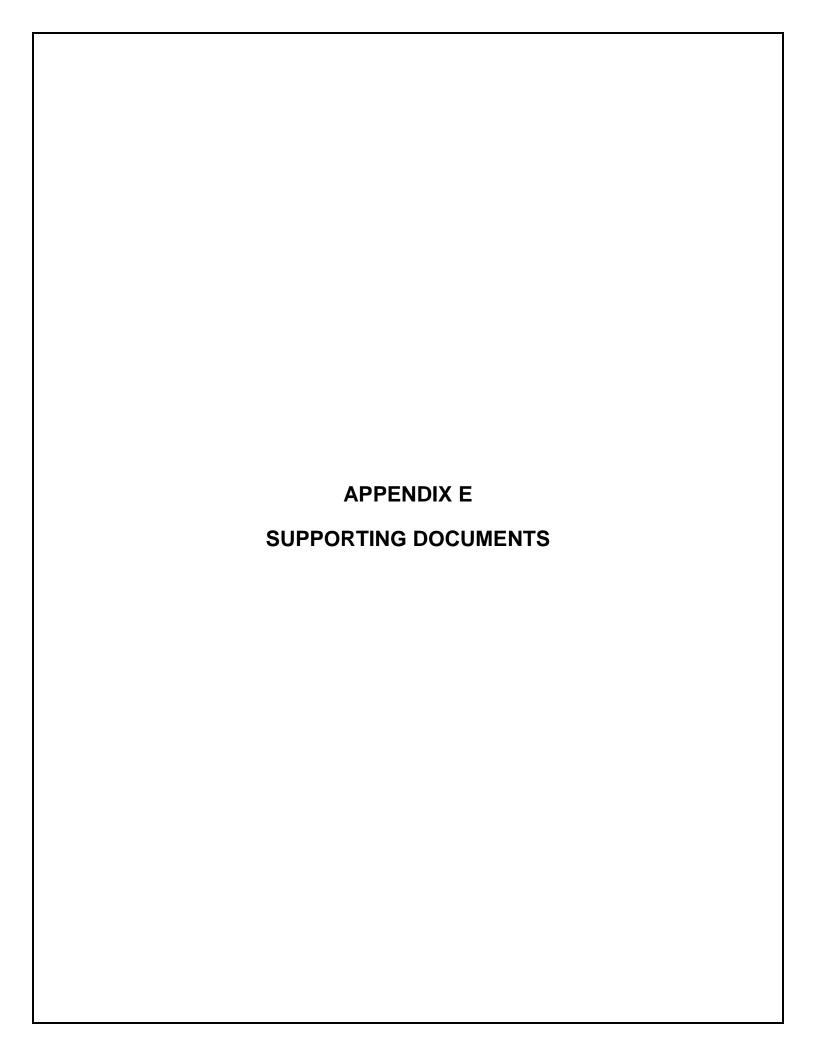
Project: Cut Sections I-35 Over Waterloo Road Interchange

Location: Oklahoma & Logan Counties, Oklahoma


Terracon Project No.: 03185253

File Name: NE 248th Street Station 97+00.00 - REV.gsz

Created By: Khatri, Deep K


Date: 3/13/2019

Color	Name	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Clayey Sand (SC)	120	0	28
	Highly Weathered to Weathered Sandstone	135	0	32
	Weathered Shale	130	150	24

Note: Soil Profile was delineated from CS-15 boring.

Drawn by:	Exhibit D-8	
DKK	LAHIDIL D-0	
Reviewed by:	Global Slope Stabiltiy Analysis	
NKT	Cut Sections I-35 over Waterloo Road Interchange	
Scale:	Oklahoma and Logan Counties, Oklahoma	
As Shown		
Terracon Project No.	lleccacon	
03185253		

GENERAL NOTES

DESCRIPTION OF SYMBOLS AND ABBREVIATIONS

	П	\square		Water Initially Encountered		(HP)	Hand Penetrometer
	Auger	Split Spoon		Water Level After a Specified Period of Time		(T)	Torvane
9			VEL	Water Level After a Specified Period of Time	STS	(b/f)	Standard Penetration Test (blows per foot)
PLIN	Shelby Tube	Pressure Meter	R	Water levels indicated on the soil boring logs are the levels measured in the	D TE	(PID)	Photo-lonization Detector
SAM	Texas Cone	Rock Core	WATE	borehole at the times indicated. Groundwater level variations will occur over time. In low permeability soils,	틸	(OVA)	Organic Vapor Analyzer
	m.		>	accurate determination of groundwater levels is not possible with short term water level observations.	Texas Cone Penetrometer		
	Grab Sample	No Recovery		water level observations.			

DESCRIPTIVE SOIL CLASSIFICATION

Soil classification is based on the Unified Soil Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic, and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency.

LOCATION AND ELEVATION NOTES

Unless otherwise noted, Latitude and Longitude are approximately determined using a hand-held GPS device. The accuracy of such devices is variable. Surface elevation data annotated with +/- indicates that no actual topographical survey was conducted to confirm the surface elevation. Instead, the surface elevation was approximately determined from topographic maps of the area.

	RELATIVE DENSITY OF COARSE-GRAINED SOILS (More than 50% retained on No. 200 sieve.) Density determined by Standard Penetration Resistance Includes gravels, sands and silts.			CONSISTENCY OF FINE-GRAINED SOILS (50% or more passing the No. 200 sieve.) Consistency determined by laboratory shear strength testing, field visual-manual procedures or standard penetration resistance			
TERMS	Descriptive Term (Density) Standard Penetration or N-Value Blows/Ft. Ring Sampler Blows/Ft.		Descriptive Term (Consistency)	Unconfined Compressive Strength, Qu, psf	Standard Penetration or N-Value Blows/Ft.	Ring Sampler Blows/Ft.	
뿔	Very Loose	0 - 3	0 - 6	Very Soft	less than 500	0 - 1	< 3
	Loose	4 - 9	7 - 18	Soft	500 to 1,000	2 - 4	3 - 4
TRENGT	Medium Dense	10 - 29	19 - 58	Medium-Stiff	1,000 to 2,000	4 - 8	5 - 9
ြင	Dense	30 - 50	59 - 98	Stiff	2,000 to 4,000	8 - 15	10 - 18
	Very Dense	> 50	<u>≥</u> 99	Very Stiff	4,000 to 8,000	15 - 30	19 - 42
				Hard	> 8,000	> 30	> 42

RELATIVE PROPORTIONS OF SAND AND GRAVEL

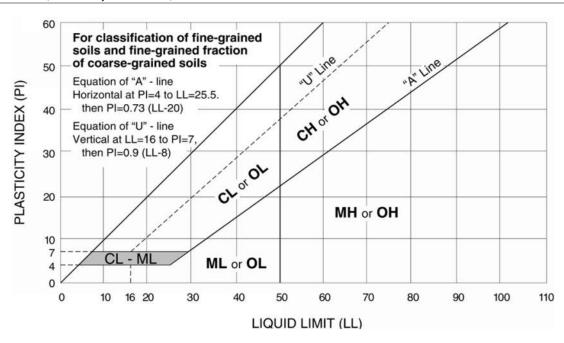
<u>Descriptive Term(s)</u> of other constituents	Percent of Dry Weight	<u>Major Component</u> <u>of Sample</u>	Particle Size
Trace	< 15	Boulders	Over 12 in. (300 mm)
With	15 - 29	Cobbles	12 in. to 3 in. (300mm to 75mm)
Modifier	> 30	Gravel	3 in. to #4 sieve (75mm to 4.75 mm)
		Sand	#4 to #200 sieve (4.75mm to 0.075mm
		Silt or Clay	Passing #200 sieve (0.075mm)

GRAIN SIZE TERMINOLOGY

PLASTICITY DESCRIPTION

RELATIVE PROPORTIONS OF FINES

Descriptive Term(s)	Percent of	<u>Term</u>	Plasticity Index
of other constituents	<u>Dry Weight</u>	Non-plastic	0
Trace	< 5	Low	1 - 10
With	5 - 12	Medium	11 - 30
Modifier	> 12	High	> 30


UNIFIED SOIL CLASSIFICATION SYSTEM

					Soil Classification	
Criteria for Assigning Group Symbols and Group Names Using Laboratory Tests ^A					Group Name ^B	
	Gravels:	Clean Gravels:	Cu ≥ 4 and 1 ≤ Cc ≤ 3 ^E	GW	Well-graded gravel F	
	More than 50% of	Less than 5% fines ^C	Cu < 4 and/or 1 > Cc > 3 ^E	GP	Poorly graded gravel F	
	coarse fraction retained	Gravels with Fines:	Fines classify as ML or MH	GM	Silty gravel F,G,H	
Coarse Grained Soils: More than 50% retained	on No. 4 sieve	More than 12% fines ^C	Fines classify as CL or CH	GC	Clayey gravel F,G,H	
on No. 200 sieve	Sands: 50% or more of coarse fraction passes No. 4 sieve	Clean Sands:	Cu ≥ 6 and 1 ≤ Cc ≤ 3 ^E	SW	Well-graded sand I	
011110. 200 01010		Less than 5% fines D	Cu < 6 and/or 1 > Cc > 3 ^E	SP	Poorly graded sand I	
		Sands with Fines: More than 12% fines ^D	Fines classify as ML or MH	SM	Silty sand G,H,I	
			Fines classify as CL or CH	SC	Clayey sand G,H,I	
Fine-Grained Soils: 50% or more passes the No. 200 sieve	Silts and Clays: Liquid limit less than 50	Inorganic:	PI > 7 and plots on or above "A" line J	CL	Lean clay K,L,M	
			PI < 4 or plots below "A" line J	ML	Silt K,L,M	
		Organic:	Liquid limit - oven dried	OL	Organic clay K,L,M,N	
			Liquid limit - not dried		Organic silt K,L,M,O	
	Silts and Clays: Liquid limit 50 or more	Inorganic:	PI plots on or above "A" line	CH	Fat clay K,L,M	
			PI plots below "A" line	MH	Elastic Silt K,L,M	
		Organic:	Liquid limit - oven dried < 0.75	ОН	Organic clay K,L,M,P	
			Liquid limit - not dried < 0.75		Organic silt K,L,M,Q	
Highly organic soils:	Primarily	organic matter, dark in o	color, and organic odor	PT	Peat	

^A Based on the material passing the 3-inch (75-mm) sieve

^E
$$Cu = D_{60}/D_{10}$$
 $Cc = \frac{(D_{30})^2}{D_{10} \times D_{60}}$

Q PI plots below "A" line.

^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.

Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.
 Sands with 5 to 12% fines require dual symbols: SW-SM well-graded

^D Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay

 $^{^{\}text{F}}$ If soil contains \geq 15% sand, add "with sand" to group name.

^G If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

^H If fines are organic, add "with organic fines" to group name.

¹ If soil contains ≥ 15% gravel, add "with gravel" to group name.

^J If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.

K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.

 $^{^{\}text{L}}$ If soil contains \geq 30% plus No. 200 predominantly sand, add "sandy" to group name.

M If soil contains ≥ 30% plus No. 200, predominantly gravel, add "gravelly" to group name.

 $^{^{}N}$ PI \geq 4 and plots on or above "A" line.

 $^{^{\}circ}$ PI < 4 or plots below "A" line.

P PI plots on or above "A" line.

GENERAL NOTES

Sedimentary Rock Classification

DESCRIPTIVE ROCK CLASSIFICATION:

Sedimentary rocks are composed of cemented clay, silt and sand sized particles. The most common minerals are clay, quartz and calcite. Rock composed primarily of calcite is called limestone; rock of sand size grains is called sandstone, and rock of clay and silt size grains is called mudstone or claystone, siltstone, or shale. Modifiers such as shaly, sandy, dolomitic, calcareous, carbonaceous, etc. are used to describe various constituents. Examples: sandy

shale: calcareous sandstone.

Light to dark colored, crystalline to fine-grained texture, composed of CaCo3, reacts readily LIMESTONE

with HCI.

Light to dark colored, crystalline to fine-grained texture, composed of CaMg(CO₃)₂, harder DOLOMITE

than limestone, reacts with HCl when powdered.

Light to dark colored, very fine-grained texture, composed of micro-crystalline quartz (SiO2), CHERT

brittle, breaks into angular fragments, will scratch glass.

Very fine-grained texture, composed of consolidated silt or clay, bedded in thin layers. The SHALE

unlaminated equivalent is frequently referred to as siltstone, claystone or mudstone.

Usually light colored, coarse to fine texture, composed of cemented sand size grains of quartz, SANDSTONE

feldspar, etc. Cement usually is silica but may be such minerals as calcite, iron-oxide, or some

other carbonate.

Rounded rock fragments of variable mineralogy varying in size from near sand to boulder size CONGLOMERATE

but usually pebble to cobble size (1/2 inch to 6 inches). Cemented together with various cementing agents. Breccia is similar but composed of angular, fractured rock particles cemented

together.

PHYSICAL PROPERTIES:

DEGREE OF WEATHERING

Bed Thickness Slight Slight decomposition of parent

material on joints. May be color

change.

Some decomposition and color Moderate

change throughout.

Rock highly decomposed, may be ex-High

tremely broken.

BEDDING AND JOINT CHARACTERISTICS

Joint Spacing **Dimensions** >10' Very Thick Very Wide Thick Wide 3' - 10' Medium Moderately Close 1' -3' 2" -1' Thin Close .4" -Very Thin 2" Very Close .1" -.4" Laminated

Bedding Plane A plane dividing sedimentary rocks of

the same or different lithology.

HARDNESS AND DEGREE OF CEMENTATION Joint Fracture in rock, generally more or

> less vertical or transverse to bedding, along which no appreciable move-

ment has occurred.

Can be scratched easily with knife, Seam Generally applies to bedding plane cannot be scratched with fingernail.

with an unspecified degree of

weathering.

Shale, Siltstone and Claystone

Limestone and Dolomite:

Can be scratched easily with knife, Hard

cannot be scratched with fingernail.

Can be scratched with fingernail.

Difficult to scratch with knife.

Moderately

Hard

Hard

Soft

Moderately

Can be scratched with fingernail. Hard

Can be easily dented but not molded Soft

with fingers.

Sandstone and Conglomerate Well Capable of scratching a knife blade. Cemented

Cemented Can be scratched with knife.

Poorly Can be broken apart easily with

Cemented fingers.

SOLUTION AND VOID CONDITIONS

Solid Contains no voids.

Vuggy (Pitted) Rock having small solution pits or

cavities up to 1/2 inch diameter, fre-

quently with a mineral lining.

Porous Containing numerous voids, pores, or

other openings, which may or may

not interconnect.

Cavernous Containing cavities or caverns, some-

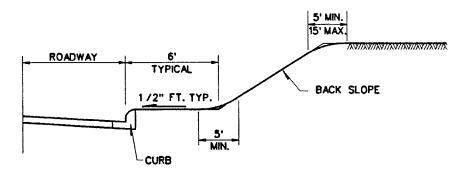
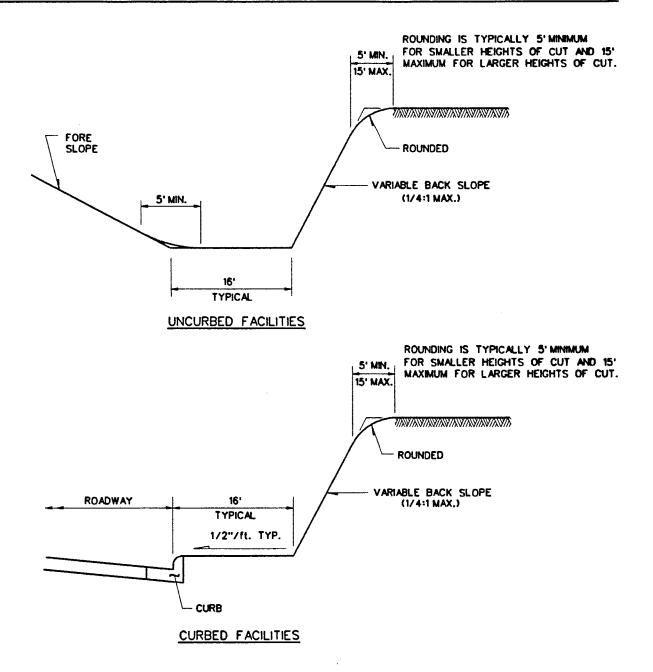

times quite large.

Table 8.3D

TYPICAL EARTH CUT SLOPES
(Curbed Facilities)


ROUNDING IS TYPICALLY 5' MINIMUM FOR FOR SMALLER HEIGHTS OF CUT AND 15' MAXIMUM FOR LARGER HEIGHTS OF CUT.

Facility	Back Slope
Freeways	6:1
Arterials	3:1
Collectors/Locals	2:1

Notes: 1. See Figure 8.3B for dimensions in rock cuts.

2. Check Geotechnical Report to determine stability for all slopes 3:1 and steeper.

- Notes: 1. Back slope in rock cut may or may not require benching.
 - 2. Check Geotechnical Report for difficult and/or unusual conditions.

TYPICAL ROCK CUT SLOPES

Figure 8.3B